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1. INTRODUCTION

The Riemannian Matched Field Processing (MFP) usually uses 
horizontal or vertical hydrophone array in order to locate the 
range and the depth of an underwater source localization  
[1-7].  For the knowledge of the author, there are no paper deal 
with the combination of a cylindrical hydrophone array (CHA) 
and matched field processing. In this paper, we proposed 
using a CHA with MFP algorithm.

If using a CHA of 32x10 elements (10 rings with each ring of 
32 elements) the rough azimuthal angle resolution,     
is obtained. Then using TDOA (Time difference of arrival) of the 
two consecutive beams the system could provide the bearing 
accuracy up to 

The problem of there are many field replicas due to the va-
riation of sound velocity is solved using a new Riemannian 
MFP.  Then, the range and the depth of underwater source are 
defined using the suggested Riemannian MFP. Since we use a 
CHA so the cylindrical spreading of sound wave is the suitable 
assumption. 

The proposed RMFP is on the basis of  Riemannian distance 
which is calculated directly by solving the geodesic equation 
on cylinder surface. 

We use parabolic approximation as the acoustic model and 
the measured data from a vertical hydrophone array from 
SACLANTC 1993 North Elba experiment. The simulations show 
that only with the data from selected vertical hydrophone 
array (there are 32 vertical arrays on cylindrical array) is enou-
gh to locate the range and the depth of underwater source 
precisely.

The paper is organized as follows. Part 2 introduces cylin-
drical hydrophone array and the procedure of using CHA with 
RMFP to find the azimuthal direction, the range and the dep-

th of underwater source.  Determination of azimuthal angle 
is described in Part 3. Part 4 is the measurement of directed 
Riemannian distance and Part 5 is Riemannian matched field 
processing. Some simulations are given in Part 6. Finally, we 
conclude the paper in Part 7.

2.CYLINDRICAL HYDROPHONE ARRAY

The geometry of a cylindrical hydrophone array of MxN ele-
ments is shown in Cartesian coordinate  in Fig. 1 as follows

Fig. 1: The geometry of cylindrical hydrophone array of MxN  ele-
ments (each ring has M elements)
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3. DETERMINATION OF AZIMUTHAL ANGLE 
DIRECTION

Using a CHA of MxN elements (N rings with each ring of M ele-
ments), the array can produce M independent beams symme-
trical in azimuthal plane. So rough azimuthal angle resolution,, 

is obtained. The desired azimuthal angle, θ, corre-
sponds to the beam of CHA with maximum received power.

The TDOA  of the two consecutive beams of CHA in θ directi-
on (left beam and right beam) denoted by τ(θ). The minimum 
variance of estimated TDOA is called Δτmin .

As in [11] whatever method is used the estimation accuracy 
is limited by the Cramer-Rao lower bound. In order to calculate 
the bearing accuracy, it is necessary to transfer the time delay 
τ to the incidental angle θ. Of course, it depends on the array 
shape.

For a linear array with length L and  
are root mean square of the frequency and bandwidth of the 
signal respectively. If T is the observation duration and SNR is 
the signal to noise ratio, the minimum variance of estimated 
TDOA is given by

           (5)

If TW=500, SNR=1, the bearing accuracy is written by
 

 
                 (6)

Therefore,

            (7)

4.DIRECTED RIEMANNIAN DISTANCE 

4.1 GEODESIC EQUATIONS
According to [12], geodesic equations are equivalent to the 

system of differential equations as follows

           (8)

where 
 are Christofell symbols and 

u, v are local coordinates.

4.2 SYMMETRIC AND KILLING VECTOR
Solving a system of second-order ordinary differential equa-

tions can be easy for simple metrics, but quickly become very 
difficult for more interesting cases. Here we exploit the sym-
metric of a manifold to simplify our tasks.

The simplest symmetries can be found by observing if the 
metric is independent of any of its coordinates. We can define 
a vector field for each symmetry such that, at every point, a 
vector points along the direction in which the metric does not 
change due to that symmetric. This is called a “Killing vector”, 
after the German mathematician Wilherm Killing.

In this case, the array factor  is given by  [8]

           (1)

where 
    is the array factor of the circular array [9] 

 in XOY plane andis the array factor of  
ULA-analog-PA in Z-axis.

Generally, the array factor of an array having M elements in 
space is given by

 
               (2)

where
  is the phase diffe-

rence of the Kth element to the reference element, 
Ik  is exited current of the Kth element, 
rk  is position vector of the Kth element and 
ar  is directional unit vector.

The directivity of an antenna can be approximated as [8]

(3)

where 
half power beam width in θ plane, 
HPBVθ is perpendicular to the half power beam width in φ pla-
ne, HPBVθ.

The procedure of using cylindrical hydrophone array with 
Riemannian MFP to find the azimuthal direction, the range 
and the depth of underwater source (θ,r,z) as Fig. 2 as follows

Fig. 2: The procedure of finding the azimuthal angle direction, the 
range and the depth of underwater source (θ,r,z)

The vertical hydrophone array in Step 3 is selected with azi-
muthal angle information from Step 2.
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where half power beam width in Ѳ plane, HPBW , is perpendicular to the half power beam 
width in ϕ plane, HPBW .  

The procedure of using cylindrical hydrophone array with Riemannian MFP to find the 
azimuthal direction, the range and the depth of underwater source (θ,r,z) as Fig. 2 as follows 

 
Fig. 2 The procedure of finding the azimuthal angle direction, the range and the depth of 
underwater source (θ,r,z). 

The vertical hydrophone array in Step 3 is selected with azimuthal angle information from 
Step 2.  

3. DETERMINATION OF AZIMUTHAL ANGLE DIRECTION 

Using a CHA of MxN elements (N rings with each ring of M elements), the array can produce 
M independent beams symmetrical in azimuthal plane. So rough azimuthal angle resolution,

0
3 360 /dB M  , is obtained. The desired azimuthal angle, θ, corresponds to the beam of 

CHA with maximum received power. 
The TDOA  of the two consecutive beams of CHA in θ direction (left beam and right beam) 
denoted by ( )  . The minimum variance of estimated TDOA is called min . 
As in [11] whatever method is used the estimation accuracy is limited by the Cramer-Rao 
lower bound. In order to calculate the bearing accuracy, it is necessary to transfer the time 
delay τ to the incidental angle θ. Of course, it depends on the array shape. 
 
For a linear array with length L and 1 2 2 1,rmsf f f W f f= = −  are root mean square of the 
frequency and bandwidth of the signal respectively. If T is the observation duration and SNR 
is the signal to noise ratio, the minimum variance of estimated TDOA is given by 

1 1
min

1 1 ( ) ( )
2 2 rmsf SNR

TW



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If TW=500, SNR=1, the bearing accuracy is written by 
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4.DIRECTED RIEMANNIAN DISTANCE  
4.1 GEODESIC EQUATIONS 
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where  k
ij are Christofell symbols and u, v are local coordinates.  

4.2 SYMMETRIC AND KILLING VECTOR 
Solving a system of second-order ordinary differential equations can be easy for simple 
metrics, but quickly become very difficult for more interesting cases. Here we exploit the 
symmetric of a manifold to simplify our tasks. 
The simplest symmetries can be found by observing if the metric is independent of any of its 
coordinates. We can define a vector field for each symmetry such that, at every point, a 
vector points along the direction in which the metric does not change due to that 
symmetric. This is called a “Killing vector”, after the German mathematician Wilherm Killing. 
For example, if we have a metric independent of x1, the killing vector of the manifold in R3 
associated with that symmetry is  (1,0,0) =   (9) 
The Riemannian distance between two point ( , )a bm m  is given by 

i j
ijL p x x=    (10) 

where ijp is the Riemannian metric of the surface. 
So, the Euler-Lagrange equation become   

   1( ) 0
( / )

d L
d dx d 


=


  (11) 

This means that the quantity inside the derivative is constant along the geodesic. 
Now, 

11

1
( / )

. te

L dxp
dx d L d

p u C





 


 



= −



= − = − =ξ u
  (12) 

where  is a killing vector and u  is a velocity. Thus .ξ u is a conserved quantity. We can 
exploit this to solve geodesic equations. 

 
4.3 GEODESIC EQUATION OF CYLINDRICAL SPREADING OF UNDERWATER 
SOUND WAVE 

As is known, there are two kinds of underwater sound propagation, namely, 
Spherical and Cylindrical spreading. In this paper, the former is used.  
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arrays on cylindrical array) is enough to locate the range and the depth of underwater 
source precisely. 
The paper is organized as follows. Part 2 introduces cylindrical hydrophone array and the 
procedure of using CHA with RMFP to find the azimuthal direction, the range and the depth 
of underwater source.  Determination of azimuthal angle is described in Part 3. Part 4 is the 
measurement of directed Riemannian distance and Part 5 is Riemannian matched field 
processing. Some simulations are given in Part 6. Finally, we conclude the paper in Part 7. 
 
2.CYLINDRICAL HYDROPHONE ARRAY 

The geometry of a cylindrical hydrophone array of MxN elements is shown in Cartesian 
coordinate  in Fig. 1 as follows 

 
Fig. 1. The geometry of cylindrical hydrophone array of MxN  elements (each ring has M 
elements) 

 
In this case, the array factor  is given by  [8] 

( , ) ( , ) ( , )cylinder ring linearAF AF AF     =
 (1) 

where ( , )ringAF    is the array factor of the circular array [9]  in XOY plane and ( , )linearAF  
is the array factor of ULA-analog-PA in Z-axis. 
Generally, the array factor of an array having M elements in space is given by 
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where . cos sin sin sin cosk k r k k kr r a x y z     = = + + , is the phase difference of the Kth 
element to the reference element, kI  is exited current of the Kth element, kr  is position 
vector of the Kth element and ar is directional unit vector. 
The directivity of an antenna can be approximated as [8]  
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The Riemannian distance between two points on the sur-
face of 3D cylinder can be written as

          (15)

As is known, the first derivative of (12) give us the velocity, 
u, as follows

          (16)

If we divide both side of (15) by ds we obtain

          (17)

Since the metric is independent of Ø, we can choose the Ki-
lling vector as  

Therefore, the conserved quantity is

          (18)

From (17),(18), we deduce

           (19)

If we set r=1, .

Now, the parameterization of the geodesic on the  surface of 
3D cylinder can be written as

        (20)

It is exactly the equation of Helix. Generally, the Helix equa-
tion in Cartesian coordinates are

           (21)

where 
D      is outer radius of the helix, 
2πh is the pitch length of the helix.

5. RIEMANNIAN MATCHED FIELD  
PROCESSING 

An acoustic pressure field on a vertical array of N sensors with 
locations  and from the true source coordi-
nate is given by

            (22)

where 
S is a spectral component of the source, 
G is Green function which is calculated by Normal mode mo-

del and  W represents uncorrelated additive ambient noise.

For example, if we have a metric independent of x1, the ki-
lling vector of the manifold in R3 associated with that symme-
try is

     
              (9)

The Riemannian distance between two point  
is given by

            (10)

where
pij is the Riemannian metric of the surface.

So, the Euler-Lagrange equation become 

          (11)

This means that the quantity inside the derivative is con-
stant along the geodesic.

Now,

          (12)

where
 is a killing vector and
 is a velocity. Thus
 is a conserved quantity. We can exploit this to solve geo-
desic equations.

4.3 GEODESIC EQUATION OF CYLINDRICAL SPREADING OF 
UNDERWATER SOUND WAVE

As is known, there are two kinds of underwater sound pro-
pagation, namely, Spherical and Cylindrical spreading. In this 
paper, the former is used. 

Therefore, let us introduce the methodology of computing 
the geodesic equation by calculating  the geodesic on the sur-
face of the 3D cylinder.

The height of a 3D cylinder is a constant z=t, therefore the 
Cylindrical coordinates are , the Christofell 
symbols are

        (13)

The geodesic equations are obtained from (8)

           (14)

This couple of second-order ordinary differential equation is 
called geodesic equations.
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Therefore, let us introduce the methodology of computing the geodesic equation by 
calculating  the geodesic on the surface of the 3D cylinder. 

The height of a 3D cylinder is a constant z=t, therefore the Cylindrical coordinates 
are 1 2( , ) ( , )x x r = , the Christofell symbols are 

1 20 0 0 1/
,

0 1/ 0ij ij

r
r r

   
 =  =   −   

 (13) 

The geodesic equations are obtained from (8) 
'' ' 2

'' ' '

( ) 0
2 0

r r

r
r



 

 − =



+ =

 (14) 

This couple of second-order ordinary differential equation is called geodesic 
equations. 

The Riemannian distance between two points on the surface of 3D cylinder can be 
written as 

2 2 2( ) ( )L dr r d= +      (15) 
As is known, the first derivative of (12) give us the velocity, u, as follows 

2( , )L dr dr
s ds ds


= =


u      (16) 

If we divide both side of (15) by ds we obtain 
2 2 21 ( ) ( ) .dr dr

ds ds


= + = u u  (17) 

Since the metric is independent of  , we can choose the Killing vector as (0,1)=ξ .  
Therefore, the conserved quantity is 

2. tedr b C
ds


= = =ξ u        (18) 

From (17),(18), we deduce  
'

2

2
'

2(1 )

b
r

br
r

 =

= −

  (19) 

If we set r=1, ' teC or t = = . 
Now, the parameterization of the geodesic on the  surface of 3D cylinder can be 

written as 
1 2 3( , , ) ( 1, , )x x x r t z t= = = =   (20) 

It is exactly the equation of Helix. Generally, the Helix equation in Cartesian 
coordinates are 

cos(t)
y sin(t)
z ht

x D
D

=
 =
 =

  (21) 

where D is outer radius of the helix, 2 h is the pitch length of the helix. 
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This couple of second-order ordinary differential equation is called geodesic 
equations. 

The Riemannian distance between two points on the surface of 3D cylinder can be 
written as 

2 2 2( ) ( )L dr r d= +      (15) 
As is known, the first derivative of (12) give us the velocity, u, as follows 

2( , )L dr dr
s ds ds


= =


u      (16) 

If we divide both side of (15) by ds we obtain 
2 2 21 ( ) ( ) .dr dr

ds ds


= + = u u  (17) 

Since the metric is independent of  , we can choose the Killing vector as (0,1)=ξ .  
Therefore, the conserved quantity is 

2. tedr b C
ds


= = =ξ u        (18) 

From (17),(18), we deduce  
'

2

2
'

2(1 )

b
r

br
r

 =

= −

  (19) 

If we set r=1, ' teC or t = = . 
Now, the parameterization of the geodesic on the  surface of 3D cylinder can be 

written as 
1 2 3( , , ) ( 1, , )x x x r t z t= = = =   (20) 

It is exactly the equation of Helix. Generally, the Helix equation in Cartesian 
coordinates are 

cos(t)
y sin(t)
z ht

x D
D

=
 =
 =

  (21) 

where D is outer radius of the helix, 2 h is the pitch length of the helix. 
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An acoustic pressure field on a vertical array of N sensors with locations 
( , ), ,= =a a ap r z a 1 N and from the true source coordinate ( , )=s s sp r z is given by 

( , ) . ( , ) ( )= +
s s a s a apF p p S G p p W p  (22) 

where S is a spectral component of the source, G is Green function which is calculated by 
Normal mode model and  W represents uncorrelated additive ambient noise. 
 The cross-spectral density matrix is written as 

1=

   =    s s s

M H

m m
m

p p pR F F    (23) 

Normalization of CSDM using Frobenius norm, we have 

2

1 1
( )

= =

=


s

s

s

M M

mn
m n

p
p

p

RR
R

  (24)

 

The Frobenius norm define that 2 ( )= = H
ijF ij

trA a AA  where ija is element of matrix A 
and H is the transpose conjugate [13]. The corresponding normalization of CSDM of 
modeled field replica from estimated source coordinate ( , )=p r z denoted by 

p
R . 

The matched field processor based on Riemannian Geometry is received by obtaining the 
space coordinates of modeled field replicas which are scanning over all modeled field 

replicas position ( , )
  

=p r z with a subject constraint of minimization of specific Riemannian 
distance.

                                                
 

According to (21) a new stochastic matched field processors which are based on directed 
Riemannian distance is defined as follows 

                                                
 

First step: 
Without loss the generality, the Riemannian matched field processor based on 

Riemannian geometry is received by obtaining the space coordinates of data replicas which 

are scanning over all modeled field replicas position ( , )r z
  

=p  with a subject constraint of 
minimization of Riemannian distance as follows 

( , ) arg min ( ) ( ) 2 tr( )
s s

r z tr tr= + −p pp p
p

R R R R
  (25) 

 
Second step:  

Now, on the basis of the outcome of directed Riemannian distance (Part II), we 
found that the geodesic distance of Cylindrical spreading is preferred to Helix distance. This 
mean that 

min 1

1

2 2

1

min( , )

( ) ( ) 2 ( )

( cos( ) cos( )) ( )

( , ) arg min( , )

s s
s s

Helix

Helix

s s Helix

d d d

d tr tr tr

d D t D t ht h t

r z d d

 



 

 

=

= + −

= − + −

=

p p
p p

p

R R R R

        (26) 

where 
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(12)

where  is a killing vector and  is a velocity. Thus  is a conserved quantity. We can

exploit this to solve geodesic equations.

4.3 GEODESIC EQUATION OF CYLINDRICAL SPREADING OF UNDERWATER 

SOUND WAVE
As  is  known,  there  are  two  kinds  of  underwater  sound  propagation,  namely,

Spherical and Cylindrical spreading. In this paper, the former is used. 

Therefore, let us introduce the methodology of computing the geodesic equation by

calculating  the geodesic on the surface of the 3D cylinder.

The height of a 3D cylinder is a constant z=t, therefore the Cylindrical coordinates

are , the Christofell symbols are

(13)

The geodesic equations are obtained from (8)

(14)

This  couple  of  second-order  ordinary  differential  equation  is  called  geodesic

equations.

The Riemannian distance between two points on the surface of 3D cylinder can be

written as

    (15)

As is known, the first derivative of (12) give us the velocity, u, as follows

    (16)

If we divide both side of (15) by ds we obtain

 (17)

Since the metric is independent of , we can choose the Killing vector as . 

Therefore, the conserved quantity is

      (18)

From (17),(18), we deduce 

(19)
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For a linear array with length  L and   are root mean square of the

frequency and bandwidth of the signal respectively. If T is the observation duration and SNR

is the signal to noise ratio, the minimum variance of estimated TDOA is given by

(5)

If TW=500, SNR=1, the bearing accuracy is written by

(6)

Therefore, 

(7)

4.DIRECTED RIEMANNIAN DISTANCE 

4.1 GEODESIC EQUATIONS
According to [12], geodesic equations are equivalent to the system of differential equations 

as follows

(8)

where  are Christofell symbols and u, v are local coordinates. 

4.2 SYMMETRIC AND KILLING VECTOR
Solving a system of  second-order  ordinary  differential  equations can be easy for  simple

metrics, but quickly become very difficult for more interesting cases. Here we exploit the

symmetric of a manifold to simplify our tasks.

The simplest symmetries can be found by observing if the metric is independent of any of its

coordinates. We can define a vector field for each symmetry such that, at every point, a

vector  points  along  the  direction  in  which  the  metric  does  not  change  due  to  that

symmetric. This is called a “Killing vector”, after the German mathematician Wilherm Killing.

For example, if we have a metric independent of x1, the killing vector of the manifold in R3

associated with that symmetry is  (9)

The Riemannian distance between two point  is given by

 (10)

where is the Riemannian metric of the surface.

So, the Euler-Lagrange equation become

    (11)

This means that the quantity inside the derivative is constant along the geodesic.

Now,
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6. SIMULATIONS

6.1 ACOUSTIC MODEL
The acoustic model in this paper using Parabolic approxi-

mation model, in this case the acoustic pressure from [14] is 
given by

                                              (27)

where 
r             is range, 
z             is depth, 
r0            is the range of the source,
Δr=r-r0 is step size, 
k0           is wavenumber of the source, 
n            is the refraction index of the medium and 

         is the Fourier transform.

6.2 INPUT ACOUSTIC DATA

Passive array data SONAR from SACLANTC1993 North Elba 
experiment available in Internet was used for processing [15].
The vertical underwater acoustic array data was collected in 
shallow-water off the Italia west coast by the NATO SACLANT 
Center in La Spezia, Italy. The original SACLANT time series has 
been converted to a series of MATLAB .mat files each of which 
contains a matrix “dat” that is 48 sensors by 64K data points 
long. Each file represents about 1 minute of data. The vertical 
array consists of 48 hydrophones with spacing 2 m between 
elements at total aperture length 94 m (18.7 m to 112.7 m in 
depth). The source emitted PRN signal with center frequency 
of 170 Hz.

The Sound Speed Profile (SSP) from [15] is described in  
Fig. 3.

Fig. 3: SSP of SACLANTC 1993 North Elba

The cross-spectral density matrix is written as

         (23)

Normalization of CSDM using Frobenius norm, we have

        (24)

The Frobenius norm define that  
where

 is element of matrix A and 
H is the transpose conjugate [13]. The corresponding normali-
zation of CSDM of modeled field replica from estimated source 
coordinate denoted by 

The matched field processor based on Riemannian Geome-
try is received by obtaining the space coordinates of modeled 
field replicas which are scanning over all modeled field repli-
cas position with a subject constraint of minimization 
of specific Riemannian distance.                                                

According to (21) a new stochastic matched field processors 
which are based on directed Riemannian distance is defined 
as follows

First step:
Without loss the generality, the Riemannian matched field 

processor based on Riemannian geometry is received by obtai-
ning the space coordinates of data replicas which are scanning 
over all modeled field replicas position with a subject 
constraint of minimization of Riemannian distance as follows

            (25)

Second step: 
Now, on the basis of the outcome of directed Riemannian 

distance (Part II), we found that the geodesic distance of Cylin-
drical spreading is preferred to Helix distance. This mean that

 
             (26)

where
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If we set r=1, .

Now, the parameterization of the geodesic on the  surface of 3D cylinder can be

written as

(20)

It  is  exactly  the  equation  of  Helix.  Generally,  the  Helix  equation  in  Cartesian

coordinates are

(21)

where D is outer radius of the helix, is the pitch length of the helix.
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6. SIMULATIONS 
6.1 ACOUSTIC MODEL 
The acoustic model in this paper using Parabolic approximation model, in this case the 
acoustic pressure from [14] is given by 
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where r is range, z is depth,  0r is the range of the source, 0r r r = − is step size, 0k is 
wavenumber of the source, n is the refraction index of the medium and   is the Fourier 
transform. 
 
6.2 INPUT ACOUSTIC DATA 
Passive array data SONAR from SACLANTC1993 North Elba experiment available in Internet 
was used for processing [15].The vertical underwater acoustic array data was collected in 
shallow-water off the Italia west coast by the NATO SACLANT Center in La Spezia, Italy. The 
original SACLANT time series has been converted to a series of MATLAB .mat files each of 
which contains a matrix “dat” that is 48 sensors by 64K data points long. Each file represents 
about 1 minute of data. The vertical array consists of 48 hydrophones with spacing 2 m 
between elements at total aperture length 94 m (18.7 m to 112.7 m in depth). The source 
emitted PRN signal with center frequency of 170 Hz. 
The Sound Speed Profile (SSP) from [15] is described in Fig. 3. 
 
 
 

      
Fig. 3: SSP of SACLANTC 1993 North Elba 
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emitted PRN signal with center frequency of 170 Hz. 
The Sound Speed Profile (SSP) from [15] is described in Fig. 3. 
 
 
 

      
Fig. 3: SSP of SACLANTC 1993 North Elba 
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6.5 SIMULATION RESULTS OF BEARING ACCURACY
The bearing accuracy of circular array is the same form of 

linear array [11]. So if we use a CHA of 32x10 elements, the 
bearing accuracy up to

Fig. 6 Bearing accuracy of circle array (N=64 elements). The result 
is reproduced from [11].

6.6 SIMULATION RESULTS OF RIEMANNIAN MATCHED 
FIELD PROCESSING

Fig. 7: Riemannian ambiguity surface for 20 modeled field repli-
cas and 10 data replicas, SNR=-3dB, No of snapshot>20 sample 
in 3 dimensions

Fig. 8: Riemannian ambiguity surface for 20 modeled field repli-
cas and 10 data replicas, SNR=-3dB, No of snapshot>20 sample 
in 2 dimensions.

6.3 SIMULATION RESULTS OF GREAT CIRCLE ON THE  
SURFACE OF A SPHERE

We simulate the helix on the surface of the 3D cylinder with 
radius D=1, h=8. The simulated result is shown in Fig. 4 as fo-
llows, in which, the helix is the red line.)

Fig. 4 The helix (red line) on the surface of the 3D cylinder.

6.4 SIMULATION RESULTS OF CYLINDRICAL HYDROPHONE 
ARRAY OF 32X10 ELEMENTS

When combining 10 rings in Z-axis with each ring spaced by 
λ/2 (half of wave length) we obtain the cylindrical hydrophone 
array of 32x10 elements. The array factor of the array is simula-
ted (Eq.(1) and Eq.(2)) and depicted in Cartesian coordinate as 
in Fig. 5 as follows.

Fig. 5. The array factor of cylindrical hydrophone array of 32x10 
elements. The result is reproduced from [10]

From the result in Fig. 2, we can see that the array can pro-
duce 32 independent beams symmetrical in azimuthal plane. 

Since , the directivity of the Cylindri-
cal hydrophone array of 32x10 elements can be approximated 
as

          (4)
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Fig.  5.  The array factor of  cylindrical  hydrophone array of  32x10 elements.  The result  is

reproduced from [10]

From the result in Fig. 2, we can see that the array can produce 32 independent beams

symmetrical in azimuthal plane. 

Since , the directivity of the Cylindrical hydrophone array of 32x10

elements can be approximated as

 (4)
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The bearing accuracy of circular array is the same form of linear array [11]. So if we use a CHA of 

32x10 elements, the bearing accuracy up to 
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7. CONCLUSION

In this paper, we propose to use a cylinder hydrophone array 
of 32x10 elements with Riemannian matched field processing 
in order to locate an underwater source in 3D picture. A com-
plete procedure of using CHA with RMFP to find the azimuthal 
direction, the range and the depth of underwater source is po-
inted out. The bearing accuracy, the range and the depth of 
underwater source are analyzed
The TDOA is used for determination of azimuthal direction 
with bearing accuracy of 0.1 degree. With the assumption of 
cylindrical spreading of underwater sound propagation, we 
found that the geodesic path in the fashion of Helix. The per-
formance of the proposed RMFP is verified in simulations, the 
true source could be detected if 20 modeled field replicas and 
10 replicas of SONAR array data were used. The performance 
of the proposed RTMP outperformed to that of standard algo-
rithm at the expense of a little more of computation. In future, 
we will analyze the cooperation of towed array, flank array and 
CHA with RMFP.
The main applications of the proposed procedure are floating 
ship localization, submarine localization in military section 
and fish finding in civilization. A passive SONAR system which 
is embedded the proposed algorithms is suggested for the 
ships of Czech Republic Navy or cargo ships in commercial use.
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Fig. 7 and Fig. 8 are obtained from RMFP in which only twen-
ty modeled field and ten replica of SONAR array data were 
used. It should be noted that the data is from SACLANTC and 
SNR level is -3 dB and the number of snapshot is greater than 
20 samples  It can be seen that the true source can be detected 
at depth of 60 m and range of 6000 m. 

The important thing is that the proposed RMFP could work 
in an uncertain ocean environment where there are a lot of 
modeled field replicas as well as replicas of SONAR array data  
whereas the conventional could not. It means that, the con-
ventional MFP is very sensitive to an uncertain ocean environ-
ment, if there is a small changing of the replicas, one could not 
detect the true underwater source precisely.

The complexity of the proposed stochastic MFP is a little bit 
more than that other Riemannian MFP since it required the se-
cond step in part 3. However, almost SONAR systems now a 
day are supported by powerful microprocessors, so the speed 
of computation of the second step is only in few seconds.

A complete procedure of using CHA with RMFP to find the 
azimuthal direction, the range and the depth of underwater 
source is pointed out. The bearing accuracy, the range and the 
depth of underwater source are analyzed. 
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