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approaches to model them separately. The separation of me-
chanical and electrical subsystems is a big advantage of de-
scribed method because it allows to treat and study them se-
parately, avoiding any influence of mechanical parameters on 
electrical and vice versa. 

2. BASIC DERIVATIONS

Let’s consider a generalized model of an electrodynamic trans-
ducer without acoustical part (acoustical impedance is com-
prised into mechanical one) shown in the Fig.1:

Fig. 1: Generalized equivalent circuit of an electrodynamic trans-
ducer

According to the theory of linear systems, both electrical 
subsystem on the left and mechanical subsystem on the right 
can be completely characterized by their complex impedan-
ces in frequency domain Zel(f) and Zmec(f) respectively. In a 
case of using the force analogy for the mechanical subsystem 
model, the gyrator component in between couples these sub-
systems through the force factor Bl, and make them influence 
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1. INTRODUCTION

Nowadays the most widely used approach to model loudspe-
aker behavior at low frequencies is the lumped element mo-
deling using electromechanical analogies. The basics of this 
approach consists in similarity of physical processes in elect-
rical circuits and mechanical systems. In this way, it is possible 
to apply well known methods from the theory of electrical cir-
cuits to analyze electrical, mechanical and acoustical systems 
or their combinations. 

The methods of loudspeaker modelling using lumped ele-
ments and electric equivalent circuits became widely used 
in the industry due to the work of Neville Thiele and Richard 
Small. They were also the first who proposed some practically 
convenient ways to determine loudspeaker parameters using 
added mass or added volume (Thiele, 1971; Small 1972). To-
gether with growing computational capability, loudspeaker 
identification methods also became more complex and loud-
speaker models more precise. Most of the modern and precise 
approaches to loudspeaker analysis requires direct measure-
ments of transducer’s mechanical parameters. For such pur-
poses the most common ways are Doppler interferometry to 
measure loudspeaker membrane velocity (Moreno, 1991) or 
laser triangulation method to measure membrane displace-
ment (Klippel, 2001). 

The method presented in this paper also requires measure-
ment of loudspeaker’s membrane displacement together with 
voltage on speaker terminals and voice coil current. These 
three values allow to completely characterize electrical and 
mechanical subsystems of a loudspeaker (i.e. to determine 
mechanical and electrical impedances) and thus use various 

thus use various approaches to model them separately. The separation of mechanical and 
electrical subsystems is a big advantage of described method because it allows to treat 
and study them separately, avoiding any influence of mechanical parameters on electrical 
and vice versa.  
 

2. Basic derivations 
 

Let’s consider a generalized model of an electrodynamic transducer without 
acoustical part (acoustical impedance is comprised into mechanical one) shown in the 
figure 1: 
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According to the theory of linear systems, both electrical subsystem on the left and 
mechanical subsystem on the right can be completely characterized by their complex 
impedances in frequency domain Zel(f) and Zmec(f) respectively. In a case of using the 
force analogy for the mechanical subsystem model, the gyrator component in between 
couples these subsystems through the force factor Bl, and make them influence each 
other. This coupling complicates the loudspeaker analysis in cases when mechanical and 
electrical subsystems need to be studied separately. The main purpose of this paper is to 
demonstrate how mechanical and electrical subsystems can be identified completely 
decoupled from each other by applying a brute-force search method to identify the force 
factor Bl value.   

In electrical domain, an equivalent loudspeaker circuit corresponds to Thevenin 
Circuit (voltage divider) as shown in the figure 2: 

 
Fig. 2 Equivalent circuit of electrodynamic transducer in electrical domain 

In this way, it is possible to write the equation for the total input electrical impedance 
of a transducer 𝑍𝑍𝑡𝑡𝑡𝑡𝑡𝑡(𝑓𝑓) as: 
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3. BRUTE-FORCE SEARCH OF THE FORCE  
FACTOR BL VALUE

The first proposal to separate mechanical and electrical im-
pedances by varying force factor Bl is done in the paper (No-
vak, 2019) by Antonin Novak. It refers to the known fact, that 
the resonance peak that can be seen in the total input elect-
rical impedance Ztot(f) is due to the resonance phenomenon 
in mechanical subsystem Zmec(f) Electrical subsystem itself is 
not resonant and the electrical impedance of an immobilized 
transducer Zel(f) should gradually increase with frequency wit-
hout resonances. Taking all stated above in account, it is possi-
ble to find such a value of the force factor Bl in equation 4 that 
resulting electrical impedance will be a smooth monotonically 
increasing function as it is required by physics. 

In order to illustrate this concept, let us consider the Fig. 4. 
Presented curves were obtained using measured signals e(t), 
i(t) and x(t) on a typical 2-inch loudspeaker, where e(t) corre-
sponds to the voltage over loudspeaker terminals, i(t) – voice-
-coil current (measured thought 1 Ohm series resistor in the 
impedance box), x(t) - instantaneous displacement of loud-
speaker’s membrane that was captured with laser triangulati-
on method using Keyence laser. All data acquisition was done 
using RME Fireface UC audio interface.

Fig. 3 Measurement setup

Measured time domain signals were transformed to the 
frequency domain, resulting in E(f), I(f) and v(f) signals re-
spectively (taking in account, that in the linear approximation 
 v(f)=j ωx-(f) membrane velocity) 

To obtain curves in the Fig. 4, measured E(f), I(f) and v(f) 
signals were substituted into the equation 4 and Bl value was 
varying manually from 0 N./A (upper blue curve) to 3.5 N./A 
(lower magenta curve) with 0.5 N./A step.

Fig. 4 Dependence of the calculated electrical impedance Zel(f) in 
equation 4 from the force factor value Bl

As it can be seen, for increasing values of Bl the resonance 
peak starts to decrease and after passing the optimal value it 

each other. This coupling complicates the loudspeaker analy-
sis in cases when mechanical and electrical subsystems need 
to be studied separately. The main purpose of this paper is to 
demonstrate how mechanical and electrical subsystems can 
be identified completely decoupled from each other by apply-
ing a brute-force search method to identify the force factor  
Bl value.  

In electrical domain, an equivalent loudspeaker circuit co-
rresponds to Thevenin Circuit (voltage divider) as shown in the 
Fig. 2:

Fig. 2: Equivalent circuit of electrodynamic transducer in electrical 
domain

In this way, it is possible to write the equation for the total 
input electrical impedance of a transducer Ztot(f) as:

          (1)

where: 
Zel(f)         - electrical impedance of an immobilized transducer,

 - electrical motional impedance

       
                (2)

Total input electrical impedance of a transducer (equation 1) 
can be measured directly by using only electrical parameters. 
Classical methods for loudspeaker identification (Small, 972) 
only measure input voltage Е(f) and voice coil current І(f), so 
to determine all speaker parameters some perturbation of 
mechanical system (adding mass or volume) and additional 
measurements are needed. Simultaneous measurement of a 
mechanical responses (membrane displacement or velocity) 
together with voltage and current allows to directly determine 
a state of mechanical subsystem and completely characterize 
a loudspeaker in one measurement without any physical per-
turbations.

Let’s now express the voice coil electrical impedance throu-
gh total input impedance and mechanical impedance:

      (3)

And use measurable parameters in equation 3:

     (4)

As it can be seen, the right-hand side of equation 4 contains 
input voltage E(f), measured responses I(f) and v(f) and unk-
nown parameter Bl. After the force factor Bl is determined, the 
mechanical subsystem can be completely separated from the 
electrical, i.e. mechanical and electrical impedances Zmec(f) 
and Zel(f) are found separately. 

thus use various approaches to model them separately. The separation of mechanical and 
electrical subsystems is a big advantage of described method because it allows to treat 
and study them separately, avoiding any influence of mechanical parameters on electrical 
and vice versa.  
 

2. Basic derivations 
 

Let’s consider a generalized model of an electrodynamic transducer without 
acoustical part (acoustical impedance is comprised into mechanical one) shown in the 
figure 1: 

 
Fig. 1 Generalized equivalent circuit of an electrodynamic transducer 

According to the theory of linear systems, both electrical subsystem on the left and 
mechanical subsystem on the right can be completely characterized by their complex 
impedances in frequency domain Zel(f) and Zmec(f) respectively. In a case of using the 
force analogy for the mechanical subsystem model, the gyrator component in between 
couples these subsystems through the force factor Bl, and make them influence each 
other. This coupling complicates the loudspeaker analysis in cases when mechanical and 
electrical subsystems need to be studied separately. The main purpose of this paper is to 
demonstrate how mechanical and electrical subsystems can be identified completely 
decoupled from each other by applying a brute-force search method to identify the force 
factor Bl value.   

In electrical domain, an equivalent loudspeaker circuit corresponds to Thevenin 
Circuit (voltage divider) as shown in the figure 2: 

 
Fig. 2 Equivalent circuit of electrodynamic transducer in electrical domain 

In this way, it is possible to write the equation for the total input electrical impedance 
of a transducer 𝑍𝑍𝑡𝑡𝑡𝑡𝑡𝑡(𝑓𝑓) as: 

method using Keyence laser. All data acquisition was done using RME Fireface UC audio 
interface. 

 
Fig. 3 Measurement setup 

 
Measured time domain signals were transformed to the frequency domain, resulting 

in E(f), I(f) and v(f) signals respectively (taking in account, that in the linear 
approximation 𝑣𝑣(𝑓𝑓) = 𝑗𝑗𝑗𝑗𝑗𝑗(𝑓𝑓) - membrane velocity)  

  To obtain curves in the figure 4, measured E(f), I(f) and v(f) signals were substituted 
into the equation 4 and Bl value was varying manually from 0 N./A (upper blue curve) to 
3.5 N./A (lower magenta curve) with 0.5 N./A step. 

 
Fig. 4 Dependence of the calculated electrical impedance Zel(f) in equation 4 from 

the force factor value Bl 

As it can be seen, for increasing values of Bl the resonance peak starts to decrease 
and after passing the optimal value it appears again. This illustrates that the value Bl = 
2.5 N./A is very close to the actual force factor of the measured transducer. 
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paper allows to automatize and accelerate the identification procedure, determine Bl value 
more precisely, eliminate human factor and obtain reliant results repeatedly. It can be 
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(measured thought 1 Ohm series resistor in the impedance box), x(t) - instantaneous 
displacement of loudspeaker’s membrane that was captured with laser triangulation 
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𝐹𝐹(𝑓𝑓) 𝐵𝐵𝐵𝐵⁄ = 𝐵𝐵𝐵𝐵2 𝑣𝑣
(𝑓𝑓)

𝐹𝐹(𝑓𝑓) = 𝐵𝐵𝐵𝐵2
𝑍𝑍𝑚𝑚𝑒𝑒𝑚𝑚(𝑓𝑓)                          (2) 

 
Total input electrical impedance of a transducer (equation 1) can be measured 

directly by using only electrical parameters. Classical methods for loudspeaker 
identification (Small, 972) only measure input voltage Е(f) and voice coil current І(f), so 
to determine all speaker parameters some perturbation of mechanical system (adding 
mass or volume) and additional measurements are needed. Simultaneous measurement of 
a mechanical responses (membrane displacement or velocity) together with voltage and 
current allows to directly determine a state of mechanical subsystem and completely 
characterize a loudspeaker in one measurement without any physical perturbations. 

Let’s now express the voice coil electrical impedance through total input impedance 
and mechanical impedance: 
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As it can be seen, the right-hand side of equation 4 contains input voltage E(f), 

measured responses I(f) and v(f) and unknown parameter Bl. After the force factor Bl is 
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Fig. 5 Cost function J(Bl)

As it can be seen in the Fig.5, the cost function has a very 
well pronounced global minimum that confirms the appro-
priate choice of it (equation 6). In this way, minimization of  

 function allows to identify loudspeaker’s force 
factor value Bl that is an important parameter for loudspeaker 
analysis:

       (6)

where: 
Bl - optimal Bl value on the determined search space .

To summarize, the algorithm can be executed by following the 
next steps:
1. Measure frequency dependent responses of a loudspeaker: 

E(f), I(f), v(f) with reasonably long frequency vector f
2. Define discrete search space Bl Є (Bl1,Bl2) 
3. For each Bl value from the search space calculate the elect-

rical impedance Zel(Bl,f) (equation 4) and find its second-or-
der polynomial approximation Zel(Bl,f) (equation 5)

4. Substitute these values into equation 6 and calculate the 
cost function J(Bl)

5. Find the minimum value of the cost function and correspon-
ding optimal Bl

Knowing the force factor value, it is possible to completely 
decouple mechanical and electrical subsystems of a loudspe-
aker and work on their analysis separately, applying various 
models or identification techniques.

Fig. 6 Total input electrical impedance Ztot(f) and its compo-
nents: electrical impedance of an immobilized transducer 
Zel(f), and electrical motional impedance Zmec

el(f) 

appears again. This illustrates that the value Bl = 2.5 N./A is 
very close to the actual force factor of the measured transdu-
cer.

Comparing to manual Bl adjustment (Novak, 2019), the me-
thod described in this paper allows to automatize and acce-
lerate the identification procedure, determine Bl value more 
precisely, eliminate human factor and obtain reliant results 
repeatedly. It can be achieved by implementing simple opti-
mization algorithm – one dimensional brute-force search over 
properly defined space Bl Є (Bl1,Bl2) and using appropriate 
cost function. Measurement frequency range should be large 
enough to capture mechanical resonance peak, but not limi-
ted to – much wider frequency range can be used without any 
manual adjustments of the algorithm.

It was discovered, that the convenient cost function for this 
method is a difference between the actually calculated Zel(Bl,f) 
value from the equation 4 based on the measured data, and its 
approximated model Zel(Bl,f). As it was described above, from 
the physical point of view, the voice coil electrical impedance 
Zel(Bl,f) should be a smooth monotonically increasing func-
tion of frequency. That’s why it can be successfully approxima-
ted with the second order polynomial function. In this case, 
when Bl value is far from optimal, the electrical impedance 
response Zel(Bl,f) calculated from equation 4 will have a reso-
nant peak that won’t be captured by second order polynomial, 
thus the error between Zel(Bl,f) and its polynomial fit Zel(Bl,f) 
will be high. Closer to the optimal Bl value the resonant peak 
will disappear, so the second order polynomial function will 
better approximate measured response Zel(Bl,f) and the error 
will be decreased.  The electrical impedance modeled with se-
cond order polynomial function will be:

      (5)

where: 
a(Bl), b (Bl), c (Bl) - polynomial coefficients that provides the 

best fit of  function for a particular Bl  
value in LMSE sense

More formally the cost function J(Bl) can be written as:

              (6)

Where: 
 - mean value of the modulus of 
approximation error over frequen-
cy.
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identified, it’s possible to determine the mechanical impedance of an electrodynamic 
loudspeaker as follow: 

𝑍𝑍𝑚𝑚𝑒𝑒𝑚𝑚(𝑓𝑓) = 𝐵𝐵𝑒𝑒2
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Frequency dependent behavior of the mechanical impedance Zmec(f) is illustrated 

below. 
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achieved by implementing simple optimization algorithm – one dimensional brute-force 
search over properly defined space 𝐵𝐵𝐵𝐵 ∈ [𝐵𝐵𝐵𝐵1,𝐵𝐵𝐵𝐵2] and using appropriate cost function. 
Measurement frequency range should be large enough to capture mechanical resonance 
peak, but not limited to – much wider frequency range can be used without any manual 
adjustments of the algorithm. 

It was discovered, that the convenient cost function for this method is a difference 
between the actually calculated 𝑍𝑍𝑒𝑒𝑒𝑒(𝐵𝐵𝐵𝐵,𝑓𝑓) value from the equation 4 based on the 
measured data, and its approximated model 𝑍𝑍𝑒𝑒�̂�𝑒(𝐵𝐵𝐵𝐵, 𝑓𝑓). As it was described above, from 
the physical point of view, the voice coil electrical impedance 𝑍𝑍𝑒𝑒𝑒𝑒(𝐵𝐵𝐵𝐵,𝑓𝑓) should be a 
smooth monotonically increasing function of frequency. That’s why it can be successfully 
approximated with the second order polynomial function. In this case, when Bl value is 
far from optimal, the electrical impedance response 𝑍𝑍𝑒𝑒𝑒𝑒(𝐵𝐵𝐵𝐵,𝑓𝑓) calculated from equation 
4 will have a resonant peak that won’t be captured by second order polynomial, thus the 
error between 𝑍𝑍𝑒𝑒𝑒𝑒(𝐵𝐵𝐵𝐵,𝑓𝑓) and its polynomial fit 𝑍𝑍𝑒𝑒�̂�𝑒(𝐵𝐵𝐵𝐵,𝑓𝑓) will be high. Closer to the 
optimal Bl value the resonant peak will disappear, so the second order polynomial 
function will better approximate measured response 𝑍𝑍𝑒𝑒𝑒𝑒(𝐵𝐵𝐵𝐵, 𝑓𝑓) and the error will be 
decreased.  The electrical impedance modeled with second order polynomial function will 
be: 

𝑍𝑍𝑒𝑒�̂�𝑒(𝐵𝐵𝐵𝐵,𝑓𝑓) =  𝑎𝑎(𝐵𝐵𝐵𝐵)𝑓𝑓2 + 𝑏𝑏(𝐵𝐵𝐵𝐵)𝑓𝑓 + 𝑐𝑐(𝐵𝐵𝐵𝐵)                                     (5) 
 

where: 𝑎𝑎(𝐵𝐵𝐵𝐵), 𝑏𝑏(𝐵𝐵𝐵𝐵), 𝑐𝑐(𝐵𝐵𝐵𝐵) - polynomial coefficients that provides the best fit of 
𝑍𝑍𝑒𝑒𝑒𝑒(𝐵𝐵𝐵𝐵,𝑓𝑓) function for a particular Bl value in LMSE sense 

More formally the cost function J(Bl) can be written as: 
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𝐼𝐼(𝑓𝑓))|] 
(6) 
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Fig. 5 Cost function J(Bl) 

 
As it can be seen in the figure 5, the cost function has a very well pronounced global 

minimum that confirms the appropriate choice of it (equation 6). In this way, 
minimization of 𝐸𝐸𝑓𝑓[|𝑍𝑍𝑒𝑒�̂�𝑒 − 𝑍𝑍𝑒𝑒𝑒𝑒|] function allows to identify loudspeaker’s force factor 
value Bl that is an important parameter for loudspeaker analysis:  

 
𝐵𝐵�̂�𝐵 = min

𝐵𝐵𝑒𝑒
[𝐽𝐽(𝐵𝐵𝐵𝐵)]                                                        (1) 

 
where: 𝐵𝐵�̂�𝐵 - optimal Bl value on the determined search space 𝐵𝐵𝐵𝐵 ∈ [𝐵𝐵𝐵𝐵1,𝐵𝐵𝐵𝐵2]. 
To summarize, the algorithm can be executed by following the next steps: 

1. Measure frequency dependent responses of a loudspeaker: E(f), I(f), v(f) with 
reasonably long frequency vector f 

2. Define discrete search space 𝐵𝐵𝐵𝐵 ∈ [𝐵𝐵𝐵𝐵1,𝐵𝐵𝐵𝐵2]  
3. For each Bl value from the search space calculate the electrical impedance 

𝑍𝑍𝑒𝑒𝑒𝑒(𝐵𝐵𝐵𝐵,𝑓𝑓) (equation 4) and find its second-order polynomial approximation 
𝑍𝑍𝑒𝑒�̂�𝑒(𝐵𝐵𝐵𝐵,𝑓𝑓) (equation 5) 

4. Substitute these values into equation 6 and calculate the cost function 𝐽𝐽(𝐵𝐵𝐵𝐵) 
5. Find the minimum value of the cost function and corresponding optimal 𝐵𝐵�̂�𝐵  

 
Knowing the force factor value, it is possible to completely decouple mechanical and 

electrical subsystems of a loudspeaker and work on their analysis separately, applying 
various models or identification techniques.  
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Fig. 8: Frequency dependent apparent resistance and apparent 
inductance of the voice-coil

The Fig. 8 shows the actual quite complicated frequency be-
havior of voice coil that includes the effect of eddy currents, 
thermal influence, skin effect, etc. These curves can be further 
modeled using lumped element single values, different types 
of curve fitting and other methods such as (Vanderkooy, 989) 
or (Wright, 1990), depending on the target application and de-
sired precision level. 

Despite the main aim of the paper is to introduce the au-
tomated Bl identification approach for loudspeaker analysis, 
this brief example above shows how precise and efficient the 
process of modeling and analysis can be when electrical impe-
dance is separated from mechanical one. This is impossible to 
achieve with classical measurement approaches using added 
mass or volume, or based on curve fitting methods. Further-
more, much deeper analysis of the moving part can be per-
form using identified complex mechanical impedance, but 
that is not in the scope of this paper. 

  4. CONCLUSION

This paper has described a method for automated identifica-
tion of loudspeaker’s force factor Bl based on measured voi-
ce coil current, input voltage and membrane displacement. 
Using identified force factor, it is possible to completely sepa-
rate complex mechanical impedance of a moving part from 
complex electrical impedance of the voice coil. Ones both 
impedances are separated it is possible to apply any analysis 
or modeling approaches to them separately avoiding mutu-
al influence of mechanical parameters on electrical and vice 
versa. As an example of more sophisticated analysis, the way 
of determining voice coil apparent resistance and apparent 
inductance from measured complex electrical impedance is 
shown. Described method can be applied to various kinds of 
moving coil loudspeakers including microspeakers and fragile 
tweeters, unlike classical approaches with added mass or ad-
ded volume. Comparing to the other methods that use displa-
cement or velocity measurement, brute-force Bl optimization 
allows to analyze loudspeakers much deeper and increase mo-
delling precision.  Comparing to manual Bl adjustment intro-
duced in (Novak, 2019), brute-force search allows to speed up 

Ones the force factor Bl and electrical motional impedan-
ce Zmec

el(f)  are both identified, it’s possible to determine the 
mechanical impedance of an electrodynamic loudspeaker as 
follow:

          (8)

Frequency dependent behavior of the mechanical impe-
dance Zmec(f) is illustrated below.

Fig. 7: Mechanical impedance of an electrodynamic loudspe-
aker

In order to demonstrate some advantages of having mecha-
nical and electrical subsystems separated, let’s take a closer 
look on the identified complex electrical impedance of immo-
bilized transducer Zel(f) and try to explore its real and imagi-
nary parts separately. Real part of the voice coil impedance 
corresponds to the sum of DC resistance RDC and frequency 
dependent so called “apparent resistance” RVC(f). Imaginary 
part corresponds to reactive impedance caused by frequency 
dependent “apparent inductance” (Novak,2019) LVC(f):

          (9)

Where:

            (10)

Note, that we still didn’t imply any specific model of the voi-
ce coil and used only the data that can be retrieved from the 
actual measurements.
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and automize the identification process, achieve more precise 
results with higher reliability as human factor will be excluded 
from the measurement. 
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