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The loss coefficient shows what fraction of the total energy 
inherent in the element is lost during one complete period of 
oscillation and finds a relationship with the energy parameters 
by means of the ratios:

         (2)

where 
E and U, respectively, are the total and potential energies of 

the element included in the system.

For the occurrence of flow under these conditions, the pre-
sence of an external force that would remove the bar from the 
state of equilibrium is necessary. A mere change in the internal 
energy state of the coupled bars due to losses will not lead to 
the emergence of such a force. Consequently, the elements of 
the bar system will oscillate in the mode corresponding to it-
self in the presence of internal losses. The time of this damping 
due to losses, during which the amplitude of oscillations will 
decrease "e" times, can be determined from the expression:

       (3)

From where it is clear that the damping time depends on 
the frequency and the loss factor. This time, on the one hand, 
should be much longer than the time required for the ener-
gy flows through the adjacent boundary of the coupled rods 
to go to zero. At the same time, on the other hand, it should 
be longer, at least by an order of magnitude of time( 
where Ltot is the total length of the system), necessary for the 
multiple origin of the elastic wave along the entire length of 
the system. Otherwise, the system we are considering will not 
satisfy the isolation conditions due to sufficiently large energy 
losses. 

Further note that for each of the rods included in the system, 
we can write down the step-by-step (cycle-by-cycle) reduction 
of energy due to its internal losses
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1. INTRODUCTION

Currently, this value is studied for U-sections, angles and plates 
[1-11]. These data were obtained for some of the above-menti-
oned elements on a special stand. It should be mentioned that 
such studies have not been carried out for energetically closed 
systems (in this case, bars). Therefore, the purpose of studies, 
the results of which are given in this article, was to clarify the 
dissipative function of the bar system, which is a closed energy 
system itself.

2. EQUIPMENT AND DEVICES USED IN THE 
RESEARCH

The internal friction inherent in real materials causes the loss 
of energy in the current cycles of vibration of the system. To 
account for the total dissipation of energy, leading to a dec-
rease in the specific energy per unit time, we introduce its 
evaluation, taking into account both internal and structural 
energy losses of the considered acoustic systems. A constant 
value called the loss factor (η) is taken as a quantitative charac-
teristic of this estimation. The loss coefficient and the energy 
attenuation coefficient (δ) considered earlier are interrelated 
in harmonic motion as follows:

          (1)

where 
f is the vibration frequency.
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losses of the considered acoustic systems. A constant value called the loss factor (η) is taken as a 
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𝜹𝜹 = 𝟏𝟏
𝟐𝟐𝝎𝝎𝝎𝝎 = 𝟐𝟐𝟐𝟐𝟐𝟐𝝎𝝎

𝟐𝟐 = 𝟐𝟐𝟐𝟐𝝎𝝎, (1) 

 
where f is the vibration frequency. 
 
The loss coefficient shows what fraction of the total energy inherent in the element is lost during one 
complete period of oscillation and finds a relationship with the energy parameters by means of the 
ratios: 
 

𝐝𝐝𝐝𝐝
𝐝𝐝𝐝𝐝 = 𝛑𝛑𝐝𝐝𝛑𝛑;  

𝐝𝐝𝐝𝐝
𝐝𝐝𝐝𝐝 = 𝛑𝛑𝐝𝐝𝛑𝛑, (2) 

 
where E and U, respectively, are the total and potential energies of the element included in the system. 
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For the occurrence of flow under these conditions, the presence of an external force that would 
remove the bar from the state of equilibrium is necessary. A mere change in the internal energy state 
of the coupled bars due to losses will not lead to the emergence of such a force. Consequently, the 
elements of the bar system will oscillate in the mode corresponding to itself in the presence of internal 
losses. The time of this damping due to losses, during which the amplitude of oscillations will decrease 
"e" times, can be determined from the expression: 
 

𝐭𝐭𝒅𝒅 = 𝟏𝟏
𝛑𝛑𝐟𝐟𝛈𝛈. (3) 

 
From where it is clear that the damping time depends on the frequency and the loss factor. This time, 
on the one hand, should be much longer than the time required for the energy flows through the 
adjacent boundary of the coupled rods to go to zero. At the same time, on the other hand, it should be 
longer, at least by an order of magnitude of time (𝐭𝐭 = 𝟏𝟏𝟏𝟏 𝐋𝐋𝒕𝒕𝒕𝒕𝒕𝒕

𝐂𝐂 , where 𝐋𝐋𝒕𝒕𝒕𝒕𝒕𝒕 is the total length of the 
system), necessary for the multiple origin of the elastic wave along the entire length of the system. 
Otherwise, the system we are considering will not satisfy the isolation conditions due to sufficiently 
large energy losses.  
 
Further note that for each of the rods included in the system, we can write down the step-by-step 
(cycle-by-cycle) reduction of energy due to its internal losses 
 

𝐔𝐔𝛈𝛈,𝐔𝐔𝛈𝛈𝟐𝟐,𝐔𝐔𝛈𝛈𝟑𝟑 , … ,𝐔𝐔𝛈𝛈𝐧𝐧 
 
where U is the value of potential energy of the element under consideration in the system; 
n is the number of full cycles of passage by the elastic wave at the time of observation. 

 
3. RESULTS AND DISCUSSION 

 
The above sequence can be used to estimate the amount of absorbed (U) (loss) energy for a finite 
period of time, for which we make an expression: 
 

𝐔𝐔𝐥𝐥𝒆𝒆 = 𝐔𝐔𝛈𝛈 +  𝐔𝐔𝛈𝛈𝟐𝟐 + ⋯+ 𝐔𝐔𝛈𝛈𝐧𝐧 = 𝐔𝐔𝛈𝛈
(𝟏𝟏 − 𝛈𝛈𝐧𝐧)
𝟏𝟏 − 𝛈𝛈 . (4) 

 
Where the right (last) part is the result of summing the finite segment of a geometric progression series 
with denominator η less than unity. The limiting period at aspiration gives a finite amount of transverse 
energy, defined by the expression 
 

𝐔𝐔𝒍𝒍𝒆𝒆 = 𝐔𝐔 𝛈𝛈
𝟏𝟏 − 𝛈𝛈. (5) 

 
Taking into account that the loss factor η for most engineering materials is, as a rule, much less than 
unity, the last expression will be written in the form 
 

𝐔𝐔𝐥𝐥𝐥𝐥 = 𝐔𝐔𝛈𝛈 𝟏𝟏
𝟏𝟏 − 𝛈𝛈 = 𝐔𝐔𝛈𝛈(𝟏𝟏 − 𝛈𝛈)−𝟏𝟏 = 𝐔𝐔(𝛈𝛈+𝛈𝛈𝟐𝟐+𝛈𝛈𝟑𝟑 + ⋯ ). (6) 

                        
With sufficient estimation for practice, let us hold here only the decomposition term, the result being: 
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If the loss factors of the individual elements that make up 
the system are equal to each other, then the total loss factor of 
the entire system will correspond to the loss factor of any ele-
ment. If, however, the loss factor on the elements     
are not equal to each other, then the system loss factor  
ηcomm will be in the range

where
ηj<ηi

All the above, of course, carries over to a system with  

If the potential energies are not equal to each other, then 
the loss factor of the system will depend on the condition 
which losses, by their values, belong to the corresponding 
energy element, for example, if the equation takes place:

Then the total loss coefficient will be close in value to the 
highest loss coefficient.

Provided that 
  but

Then the total loss factor will lie between the boundaries

           (10)

However, its value will be closer to the lowest number.

To summarize, it should be mentioned that in a mechanical 
system, it is advisable to first impose conditions on the change 
of losses in the system elements having the greatest potential 
energy.

At the same time, the limiting total estimation of the value 
of energy losses in the mechanical system does not influen-
ce the character of energy distribution within the system and 
at the same time, as it is established in work, the presence of 
losses accelerates the process of approach in system of an 
energy stationary state at which energy exchange between its 
elements stops.

It is known that the loss factor, the inverse of the Q-value 
system, corresponds to the tangent of the phase angle (φ). For 
most materials used in engineering, the angle tangent can be 
replaced by the value of the total angle due to the smallness 
of its values, so that

Since losses are caused by internal friction in the suppre-
ssion elements of which the material is made, this makes it po-
ssible to consider them dependent on each other, at the same 
time, the stiffness factor (the value inverse of the suppression) 
is proportional to the elastic modulus, and therefore the elas-
tic and dissipative properties of the suppression element can 

where 
U is the value of potential energy of the element under consi-

deration in the system;
n is the number of full cycles of passage by the elastic wave at 

the time of observation.

3. RESULTS AND DISCUSSION

The above sequence can be used to estimate the amount of 
absorbed (U) (loss) energy for a finite period of time, for which 
we make an expression:

             (4)

Where the right (last) part is the result of summing the finite 
segment of a geometric progression series with denominator 
η less than unity. The limiting period at aspiration gives a finite 
amount of transverse energy, defined by the expression

            (5)

Taking into account that the loss factor η for most enginee-
ring materials is, as a rule, much less than unity, the last expre-
ssion will be written in the form

 

(6)

With sufficient estimation for practice, let us hold here only 
the decomposition term, the result being:

          (7)

Analyzing the above relations, it is easy to see that the gre-
atest amount of energy is lost during the first cycle of oscilla-
tions, which is also clear from the last equality, which is the re-
sult of the limiting operation, and this fact takes place for each 
element included in the system. At the same time, from the 
last relations we establish that the total energy of losses (resul-
ting from the limiting operation) tends to its constant value.

The total energy of system losses will be added up from the 
losses of its individual elements, so for each first current cycle 
of elastic wave propagation through the system elements (its 
double stroke), we can write down the energy ratio taking into 
account the losses of the first main current cycle, i.e.

           (8)

From where, the total loss factor of the system will be repre-
sented by the formula

           (9)
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For the occurrence of flow under these conditions, the presence of an external force that would 
remove the bar from the state of equilibrium is necessary. A mere change in the internal energy state 
of the coupled bars due to losses will not lead to the emergence of such a force. Consequently, the 
elements of the bar system will oscillate in the mode corresponding to itself in the presence of internal 
losses. The time of this damping due to losses, during which the amplitude of oscillations will decrease 
"e" times, can be determined from the expression: 
 

𝐭𝐭𝒅𝒅 = 𝟏𝟏
𝛑𝛑𝐟𝐟𝛈𝛈. (3) 

 
From where it is clear that the damping time depends on the frequency and the loss factor. This time, 
on the one hand, should be much longer than the time required for the energy flows through the 
adjacent boundary of the coupled rods to go to zero. At the same time, on the other hand, it should be 
longer, at least by an order of magnitude of time (𝐭𝐭 = 𝟏𝟏𝟏𝟏 𝐋𝐋𝒕𝒕𝒕𝒕𝒕𝒕

𝐂𝐂 , where 𝐋𝐋𝒕𝒕𝒕𝒕𝒕𝒕 is the total length of the 
system), necessary for the multiple origin of the elastic wave along the entire length of the system. 
Otherwise, the system we are considering will not satisfy the isolation conditions due to sufficiently 
large energy losses.  
 
Further note that for each of the rods included in the system, we can write down the step-by-step 
(cycle-by-cycle) reduction of energy due to its internal losses 
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where U is the value of potential energy of the element under consideration in the system; 
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Where the right (last) part is the result of summing the finite segment of a geometric progression series 
with denominator η less than unity. The limiting period at aspiration gives a finite amount of transverse 
energy, defined by the expression 
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𝐔𝐔𝒍𝒍𝒍𝒍 = 𝐔𝐔𝛈𝛈. (7) 
 
Analyzing the above relations, it is easy to see that the greatest amount of energy is lost during the 
first cycle of oscillations, which is also clear from the last equality, which is the result of the limiting 
operation, and this fact takes place for each element included in the system. At the same time, from 
the last relations we establish that the total energy of losses (resulting from the limiting operation) 
tends to its constant value. 
 
The total energy of system losses will be added up from the losses of its individual elements, so for 
each first current cycle of elastic wave propagation through the system elements (its double stroke), 
we can write down the energy ratio taking into account the losses of the first main current cycle, i.e. 
 

𝐀𝐀𝛈𝛈 = 𝐔𝐔𝟏𝟏𝛈𝛈𝟏𝟏 + 𝐔𝐔𝟐𝟐𝛈𝛈𝟐𝟐 + ⋯+ 𝐔𝐔𝐧𝐧𝛈𝛈𝐧𝐧 = ∑𝐔𝐔𝐧𝐧𝛈𝛈𝐧𝐧
𝐧𝐧

. (8) 

 
From where, the total loss factor of the system will be represented by the formula 
 

𝛈𝛈𝒕𝒕𝒕𝒕𝒕𝒕 = 𝐔𝐔𝟏𝟏𝛈𝛈𝟏𝟏
𝐀𝐀 + 𝐔𝐔𝟐𝟐𝛈𝛈𝟐𝟐

𝐀𝐀 + ⋯+ 𝐔𝐔𝐧𝐧𝛈𝛈𝐧𝐧
𝐀𝐀 =

∑ 𝐔𝐔𝐧𝐧𝛈𝛈𝐧𝐧𝐧𝐧
𝐀𝐀 . (9) 

 
If the loss factors of the individual elements that make up the system are equal to each other, then the 
total loss factor of the entire system will correspond to the loss factor of any element. If, however, the 
loss factor on the elements 𝛈𝛈𝒊𝒊 (𝐢𝐢 = 𝟏𝟏,𝐧𝐧̅̅ ̅̅ ̅)  are not equal to each other, then the system loss factor 
ηcomm will be in the range  
 

𝛈𝛈𝐣𝐣 < 𝛈𝛈𝒕𝒕𝒕𝒕𝒕𝒕 < 𝛈𝛈𝐢𝐢, 
 
where 𝛈𝛈𝐣𝐣 < 𝛈𝛈𝐢𝐢. 
 
All the above, of course, carries over to a system with    
 

𝐔𝐔𝟏𝟏 = 𝐔𝐔𝟐𝟐 = 𝐔𝐔𝟑𝟑 = ⋯𝐔𝐔𝐧𝐧. 
 
If the potential energies are not equal to each other, then the loss factor of the system will depend on 
the condition which losses, by their values, belong to the corresponding energy element, for example, 
if the equation takes place: 
 

𝐔𝐔𝟏𝟏 > 𝐔𝐔𝟐𝟐 > 𝐔𝐔𝟑𝟑; 
𝛈𝛈𝟏𝟏 < 𝛈𝛈𝟐𝟐 < 𝛈𝛈𝟑𝟑. 

 
Then the total loss coefficient will be close in value to the highest loss coefficient. 
 
Provided that 𝐔𝐔𝟏𝟏 > 𝐔𝐔𝟐𝟐 > 𝐔𝐔𝟑𝟑, 

    but  𝛈𝛈𝟏𝟏 < 𝛈𝛈𝟐𝟐 < 𝛈𝛈𝟑𝟑. 
 
Then the total loss factor will lie between the boundaries 
 

𝛈𝛈𝟏𝟏 < 𝛈𝛈𝐭𝐭𝐭𝐭𝐭𝐭 < 𝛈𝛈𝟑𝟑. (10) 
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the condition which losses, by their values, belong to the corresponding energy element, for example, 
if the equation takes place: 
 

𝐔𝐔𝟏𝟏 > 𝐔𝐔𝟐𝟐 > 𝐔𝐔𝟑𝟑; 
𝛈𝛈𝟏𝟏 < 𝛈𝛈𝟐𝟐 < 𝛈𝛈𝟑𝟑. 

 
Then the total loss coefficient will be close in value to the highest loss coefficient. 
 
Provided that 𝐔𝐔𝟏𝟏 > 𝐔𝐔𝟐𝟐 > 𝐔𝐔𝟑𝟑, 

    but  𝛈𝛈𝟏𝟏 < 𝛈𝛈𝟐𝟐 < 𝛈𝛈𝟑𝟑. 
 
Then the total loss factor will lie between the boundaries 
 

𝛈𝛈𝟏𝟏 < 𝛈𝛈𝐭𝐭𝐭𝐭𝐭𝐭 < 𝛈𝛈𝟑𝟑. (10) 
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However, its value will be closer to the lowest number. 
 
To summarize, it should be mentioned that in a mechanical system, it is advisable to first impose 
conditions on the change of losses in the system elements having the greatest potential energy. 
 
At the same time, the limiting total estimation of the value of energy losses in the mechanical system 
does not influence the character of energy distribution within the system and at the same time, as it is 
established in work, the presence of losses accelerates the process of approach in system of an energy 
stationary state at which energy exchange between its elements stops. 
 
It is known that the loss factor, the inverse of the Q-value system, corresponds to the tangent of the 
phase angle (𝛗𝛗). For most materials used in engineering, the angle tangent can be replaced by the 
value of the total angle due to the smallness of its values, so that 
 

𝛈𝛈 = 𝐭𝐭𝐭𝐭𝛗𝛗 ≈ 𝛗𝛗. 
 
Since losses are caused by internal friction in the suppression elements of which the material is made, 
this makes it possible to consider them dependent on each other, at the same time, the stiffness factor 
(the value inverse of the suppression) is proportional to the elastic modulus, and therefore the elastic 
and dissipative properties of the suppression element can be characterized by the elasticity complex, 
which allows to write the equality 
 

𝐄𝐄∗ = �̅�𝐄 = 𝐄𝐄𝟎𝟎 + 𝐢𝐢𝐄𝐄𝟎𝟎, ≈ 𝐄𝐄𝟎𝟎(𝟏𝟏 + 𝐢𝐢𝛈𝛈). (11) 
 
This equality is true to within an order of η2by virtue of the expansion, and since η≪1, the values E0 
and |�̅�𝐄| = 𝐄𝐄𝟎𝟎√𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝐄𝐄, should be considered equal between themselves, so the zero index of E 
can be omitted to account for the real part. 
 
In accordance with this complex modulus of elasticity let us write it in the form: 
 

𝐄𝐄∗ = 𝐄𝐄(𝛂𝛂 + 𝐢𝐢𝛃𝛃) = 𝐄𝐄 (𝟏𝟏 + 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗
𝟏𝟏 − 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗), (12) 

 
where 𝛗𝛗 is the phase angle when losses are taken into account. 
 
By multiplying the numerator and denominator by the conjugate significant expression (𝟏𝟏 + 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗) we 
successively obtain: 
 

𝐄𝐄(𝛂𝛂 + 𝐢𝐢𝛃𝛃) = 𝐄𝐄 (𝟏𝟏 + 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗
𝟏𝟏 − 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗 ∙ 𝟏𝟏 + 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗

𝟏𝟏 + 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗) = 𝐄𝐄
(𝟏𝟏 + 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗)𝟐𝟐
𝟏𝟏 + 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗 = 𝐄𝐄(𝟏𝟏 − 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗

𝟏𝟏 + 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗 + 𝐢𝐢 𝟐𝟐𝐭𝐭𝐭𝐭𝛗𝛗
𝟏𝟏 + 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗). 

(13) 

 
Then for equality of complex quantities we must have: 
 

(∗)𝛂𝛂 = 𝟏𝟏 − 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗
𝟏𝟏 + 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗 = 𝐜𝐜𝐜𝐜𝐜𝐜𝟐𝟐𝐜𝐜; 

𝛃𝛃 = 𝟐𝟐𝐭𝐭𝐭𝐭𝛗𝛗
𝟏𝟏 + 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗 = 𝐜𝐜𝐢𝐢𝐬𝐬𝟐𝟐𝐜𝐜; 
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𝐔𝐔𝒍𝒍𝒍𝒍 = 𝐔𝐔𝛈𝛈. (7) 
 
Analyzing the above relations, it is easy to see that the greatest amount of energy is lost during the 
first cycle of oscillations, which is also clear from the last equality, which is the result of the limiting 
operation, and this fact takes place for each element included in the system. At the same time, from 
the last relations we establish that the total energy of losses (resulting from the limiting operation) 
tends to its constant value. 
 
The total energy of system losses will be added up from the losses of its individual elements, so for 
each first current cycle of elastic wave propagation through the system elements (its double stroke), 
we can write down the energy ratio taking into account the losses of the first main current cycle, i.e. 
 

𝐀𝐀𝛈𝛈 = 𝐔𝐔𝟏𝟏𝛈𝛈𝟏𝟏 + 𝐔𝐔𝟐𝟐𝛈𝛈𝟐𝟐 + ⋯+ 𝐔𝐔𝐧𝐧𝛈𝛈𝐧𝐧 = ∑𝐔𝐔𝐧𝐧𝛈𝛈𝐧𝐧
𝐧𝐧

. (8) 

 
From where, the total loss factor of the system will be represented by the formula 
 

𝛈𝛈𝒕𝒕𝒕𝒕𝒕𝒕 = 𝐔𝐔𝟏𝟏𝛈𝛈𝟏𝟏
𝐀𝐀 + 𝐔𝐔𝟐𝟐𝛈𝛈𝟐𝟐

𝐀𝐀 + ⋯+ 𝐔𝐔𝐧𝐧𝛈𝛈𝐧𝐧
𝐀𝐀 =

∑ 𝐔𝐔𝐧𝐧𝛈𝛈𝐧𝐧𝐧𝐧
𝐀𝐀 . (9) 

 
If the loss factors of the individual elements that make up the system are equal to each other, then the 
total loss factor of the entire system will correspond to the loss factor of any element. If, however, the 
loss factor on the elements 𝛈𝛈𝒊𝒊 (𝐢𝐢 = 𝟏𝟏,𝐧𝐧̅̅ ̅̅ ̅)  are not equal to each other, then the system loss factor 
ηcomm will be in the range  
 

𝛈𝛈𝐣𝐣 < 𝛈𝛈𝒕𝒕𝒕𝒕𝒕𝒕 < 𝛈𝛈𝐢𝐢, 
 
where 𝛈𝛈𝐣𝐣 < 𝛈𝛈𝐢𝐢. 
 
All the above, of course, carries over to a system with    
 

𝐔𝐔𝟏𝟏 = 𝐔𝐔𝟐𝟐 = 𝐔𝐔𝟑𝟑 = ⋯𝐔𝐔𝐧𝐧. 
 
If the potential energies are not equal to each other, then the loss factor of the system will depend on 
the condition which losses, by their values, belong to the corresponding energy element, for example, 
if the equation takes place: 
 

𝐔𝐔𝟏𝟏 > 𝐔𝐔𝟐𝟐 > 𝐔𝐔𝟑𝟑; 
𝛈𝛈𝟏𝟏 < 𝛈𝛈𝟐𝟐 < 𝛈𝛈𝟑𝟑. 

 
Then the total loss coefficient will be close in value to the highest loss coefficient. 
 
Provided that 𝐔𝐔𝟏𝟏 > 𝐔𝐔𝟐𝟐 > 𝐔𝐔𝟑𝟑, 

    but  𝛈𝛈𝟏𝟏 < 𝛈𝛈𝟐𝟐 < 𝛈𝛈𝟑𝟑. 
 
Then the total loss factor will lie between the boundaries 
 

𝛈𝛈𝟏𝟏 < 𝛈𝛈𝐭𝐭𝐭𝐭𝐭𝐭 < 𝛈𝛈𝟑𝟑. (10) 
 



AKUSTIKA, VOLUME 41 /November 2021
www.akustikad.com

10

firmation with the studies given in this paper, connected with 
the energy distribution in the presence of damping and wi-
thout it, where the equality took place: η = arctg (1), by the 
example of considering the interaction of two identical rods. 
This condition was represented graphically as a sectorless line 
on the phase plane. Taking equality α+β=1 as the basis, and 
also taking into account that by analogy with the complex 
modulus of elasticity the complex velocity of propagation 
c* is connected with the loss factor by the following relation  
c* = c(1-i η/2), which gives the grounds for taking the energy 
conservation law as the second equality

where 
 and 
 are energy transition coefficients.

From these two equalities, one, and, putting additionally 
that  , we show that with these related parame-
ters, the formula

does not exceed unity element, i.e.  accounting 
for losses.

Indeed, multiplying the above equations term by term, we 
obtain 

or

Whence

Since (bα-aβ right)2 ≥0, we have (aα-bβ right )2 ≤1 , hence 
we conclude that

considering  and 

The obtained last equation establishes the relationship be-
tween the transition coefficients Q and R and the loss factor η.

It follows that taking into account the loss factor from the 
point of view of estimating energy absorption accelerates the 
process of establishing the stationary energy state by the sys-
tem. Indeed, as shown earlier, the formula

represents the rate of change in the energy flux for each ele-
ment of the system as a function of n = τ/T (the number of 
cycles at the moment of observation) in cases where energy 
losses were neglected.

be characterized by the elasticity complex, which allows to 
write the equality

        (11)

This equality is true to within an order of by virtue of the 
expansion, and since η«1, the values E0 and  
should be considered equal between themselves, so the zero 
index of E can be omitted to account for the real part.

In accordance with this complex modulus of elasticity let us 
write it in the form:

           (12)

where 
φ is the phase angle when losses are taken into account.

By multiplying the numerator and denominator by the con-
jugate significant expression (1+itg φ) we successively obtain:

            (13)

Then for equality of complex quantities we must have:

Given that the tangent of the phase angle corresponds to 
the loss factor, we can write:

and 24 = arctg η = η, 
where : φ =η/2

From this we obtain that φ is the coefficient of internal fric-
tion per half-period, corresponding to half of the loss coeffici-
ent per cycle.

Between α and β the conditions are fulfilled: modulus  
argument

The transformations give:

The limiting case, according to equality (*), we have when 
 at which α and β obtain values α=0, β=1, co-

rresponding to a perfectly plastic body. This result finds con-
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However, its value will be closer to the lowest number. 
 
To summarize, it should be mentioned that in a mechanical system, it is advisable to first impose 
conditions on the change of losses in the system elements having the greatest potential energy. 
 
At the same time, the limiting total estimation of the value of energy losses in the mechanical system 
does not influence the character of energy distribution within the system and at the same time, as it is 
established in work, the presence of losses accelerates the process of approach in system of an energy 
stationary state at which energy exchange between its elements stops. 
 
It is known that the loss factor, the inverse of the Q-value system, corresponds to the tangent of the 
phase angle (𝛗𝛗). For most materials used in engineering, the angle tangent can be replaced by the 
value of the total angle due to the smallness of its values, so that 
 

𝛈𝛈 = 𝐭𝐭𝐭𝐭𝛗𝛗 ≈ 𝛗𝛗. 
 
Since losses are caused by internal friction in the suppression elements of which the material is made, 
this makes it possible to consider them dependent on each other, at the same time, the stiffness factor 
(the value inverse of the suppression) is proportional to the elastic modulus, and therefore the elastic 
and dissipative properties of the suppression element can be characterized by the elasticity complex, 
which allows to write the equality 
 

𝐄𝐄∗ = �̅�𝐄 = 𝐄𝐄𝟎𝟎 + 𝐢𝐢𝐄𝐄𝟎𝟎, ≈ 𝐄𝐄𝟎𝟎(𝟏𝟏 + 𝐢𝐢𝛈𝛈). (11) 
 
This equality is true to within an order of η2by virtue of the expansion, and since η≪1, the values E0 
and |�̅�𝐄| = 𝐄𝐄𝟎𝟎√𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝐄𝐄, should be considered equal between themselves, so the zero index of E 
can be omitted to account for the real part. 
 
In accordance with this complex modulus of elasticity let us write it in the form: 
 

𝐄𝐄∗ = 𝐄𝐄(𝛂𝛂 + 𝐢𝐢𝛃𝛃) = 𝐄𝐄 (𝟏𝟏 + 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗
𝟏𝟏 − 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗), (12) 

 
where 𝛗𝛗 is the phase angle when losses are taken into account. 
 
By multiplying the numerator and denominator by the conjugate significant expression (𝟏𝟏 + 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗) we 
successively obtain: 
 

𝐄𝐄(𝛂𝛂 + 𝐢𝐢𝛃𝛃) = 𝐄𝐄 (𝟏𝟏 + 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗
𝟏𝟏 − 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗 ∙ 𝟏𝟏 + 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗

𝟏𝟏 + 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗) = 𝐄𝐄
(𝟏𝟏 + 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗)𝟐𝟐
𝟏𝟏 + 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗 = 𝐄𝐄(𝟏𝟏 − 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗

𝟏𝟏 + 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗 + 𝐢𝐢 𝟐𝟐𝐭𝐭𝐭𝐭𝛗𝛗
𝟏𝟏 + 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗). 

(13) 

 
Then for equality of complex quantities we must have: 
 

(∗)𝛂𝛂 = 𝟏𝟏 − 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗
𝟏𝟏 + 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗 = 𝐜𝐜𝐜𝐜𝐜𝐜𝟐𝟐𝐜𝐜; 

𝛃𝛃 = 𝟐𝟐𝐭𝐭𝐭𝐭𝛗𝛗
𝟏𝟏 + 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗 = 𝐜𝐜𝐢𝐢𝐬𝐬𝟐𝟐𝐜𝐜; 
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However, its value will be closer to the lowest number. 
 
To summarize, it should be mentioned that in a mechanical system, it is advisable to first impose 
conditions on the change of losses in the system elements having the greatest potential energy. 
 
At the same time, the limiting total estimation of the value of energy losses in the mechanical system 
does not influence the character of energy distribution within the system and at the same time, as it is 
established in work, the presence of losses accelerates the process of approach in system of an energy 
stationary state at which energy exchange between its elements stops. 
 
It is known that the loss factor, the inverse of the Q-value system, corresponds to the tangent of the 
phase angle (𝛗𝛗). For most materials used in engineering, the angle tangent can be replaced by the 
value of the total angle due to the smallness of its values, so that 
 

𝛈𝛈 = 𝐭𝐭𝐭𝐭𝛗𝛗 ≈ 𝛗𝛗. 
 
Since losses are caused by internal friction in the suppression elements of which the material is made, 
this makes it possible to consider them dependent on each other, at the same time, the stiffness factor 
(the value inverse of the suppression) is proportional to the elastic modulus, and therefore the elastic 
and dissipative properties of the suppression element can be characterized by the elasticity complex, 
which allows to write the equality 
 

𝐄𝐄∗ = �̅�𝐄 = 𝐄𝐄𝟎𝟎 + 𝐢𝐢𝐄𝐄𝟎𝟎, ≈ 𝐄𝐄𝟎𝟎(𝟏𝟏 + 𝐢𝐢𝛈𝛈). (11) 
 
This equality is true to within an order of η2by virtue of the expansion, and since η≪1, the values E0 
and |�̅�𝐄| = 𝐄𝐄𝟎𝟎√𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝐄𝐄, should be considered equal between themselves, so the zero index of E 
can be omitted to account for the real part. 
 
In accordance with this complex modulus of elasticity let us write it in the form: 
 

𝐄𝐄∗ = 𝐄𝐄(𝛂𝛂 + 𝐢𝐢𝛃𝛃) = 𝐄𝐄 (𝟏𝟏 + 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗
𝟏𝟏 − 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗), (12) 

 
where 𝛗𝛗 is the phase angle when losses are taken into account. 
 
By multiplying the numerator and denominator by the conjugate significant expression (𝟏𝟏 + 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗) we 
successively obtain: 
 

𝐄𝐄(𝛂𝛂 + 𝐢𝐢𝛃𝛃) = 𝐄𝐄 (𝟏𝟏 + 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗
𝟏𝟏 − 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗 ∙ 𝟏𝟏 + 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗

𝟏𝟏 + 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗) = 𝐄𝐄
(𝟏𝟏 + 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗)𝟐𝟐
𝟏𝟏 + 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗 = 𝐄𝐄(𝟏𝟏 − 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗

𝟏𝟏 + 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗 + 𝐢𝐢 𝟐𝟐𝐭𝐭𝐭𝐭𝛗𝛗
𝟏𝟏 + 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗). 

(13) 

 
Then for equality of complex quantities we must have: 
 

(∗)𝛂𝛂 = 𝟏𝟏 − 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗
𝟏𝟏 + 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗 = 𝐜𝐜𝐜𝐜𝐜𝐜𝟐𝟐𝐜𝐜; 

𝛃𝛃 = 𝟐𝟐𝐭𝐭𝐭𝐭𝛗𝛗
𝟏𝟏 + 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗 = 𝐜𝐜𝐢𝐢𝐬𝐬𝟐𝟐𝐜𝐜; 
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However, its value will be closer to the lowest number. 
 
To summarize, it should be mentioned that in a mechanical system, it is advisable to first impose 
conditions on the change of losses in the system elements having the greatest potential energy. 
 
At the same time, the limiting total estimation of the value of energy losses in the mechanical system 
does not influence the character of energy distribution within the system and at the same time, as it is 
established in work, the presence of losses accelerates the process of approach in system of an energy 
stationary state at which energy exchange between its elements stops. 
 
It is known that the loss factor, the inverse of the Q-value system, corresponds to the tangent of the 
phase angle (𝛗𝛗). For most materials used in engineering, the angle tangent can be replaced by the 
value of the total angle due to the smallness of its values, so that 
 

𝛈𝛈 = 𝐭𝐭𝐭𝐭𝛗𝛗 ≈ 𝛗𝛗. 
 
Since losses are caused by internal friction in the suppression elements of which the material is made, 
this makes it possible to consider them dependent on each other, at the same time, the stiffness factor 
(the value inverse of the suppression) is proportional to the elastic modulus, and therefore the elastic 
and dissipative properties of the suppression element can be characterized by the elasticity complex, 
which allows to write the equality 
 

𝐄𝐄∗ = �̅�𝐄 = 𝐄𝐄𝟎𝟎 + 𝐢𝐢𝐄𝐄𝟎𝟎, ≈ 𝐄𝐄𝟎𝟎(𝟏𝟏 + 𝐢𝐢𝛈𝛈). (11) 
 
This equality is true to within an order of η2by virtue of the expansion, and since η≪1, the values E0 
and |�̅�𝐄| = 𝐄𝐄𝟎𝟎√𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝐄𝐄, should be considered equal between themselves, so the zero index of E 
can be omitted to account for the real part. 
 
In accordance with this complex modulus of elasticity let us write it in the form: 
 

𝐄𝐄∗ = 𝐄𝐄(𝛂𝛂 + 𝐢𝐢𝛃𝛃) = 𝐄𝐄 (𝟏𝟏 + 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗
𝟏𝟏 − 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗), (12) 

 
where 𝛗𝛗 is the phase angle when losses are taken into account. 
 
By multiplying the numerator and denominator by the conjugate significant expression (𝟏𝟏 + 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗) we 
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𝟏𝟏 + 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗 = 𝐜𝐜𝐜𝐜𝐜𝐜𝟐𝟐𝐜𝐜; 
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𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 = 𝐭𝐭𝐭𝐭𝐭𝐭𝛗𝛗
𝟏𝟏 − 𝐭𝐭𝐭𝐭𝐭𝐭𝛗𝛗 = 𝛃𝛃

𝛂𝛂 ; 

𝐭𝐭𝐭𝐭 = 𝐚𝐚𝐚𝐚𝐚𝐚𝐭𝐭𝐭𝐭 𝛃𝛃𝛂𝛂. 

 
Given that the tangent of the phase angle corresponds to the loss factor, we can write: 
 

𝛂𝛂 = 𝟏𝟏 − 𝛗𝛗𝐭𝐭

𝟏𝟏 + 𝛗𝛗𝐭𝐭 ; 

𝛃𝛃 = 𝐭𝐭𝐭𝐭
𝟏𝟏 + 𝛗𝛗𝐭𝐭, 

 
and 24 = arctg η = η, where 𝛗𝛗 = 𝛈𝛈/𝐭𝐭. 
 
From this we obtain that 𝛗𝛗 is the coefficient of internal friction per half-period, corresponding to half 
of the loss coefficient per cycle. 
 
Between α and β the conditions are fulfilled: modulus |𝐄𝐄∗| = 𝟏𝟏; argument 𝐄𝐄∗(𝐚𝐚𝐚𝐚𝐚𝐚𝐭𝐭𝐄𝐄∗ = 𝐭𝐭𝐭𝐭). 
 
The transformations give:  

|𝐄𝐄∗| = √𝛂𝛂𝐭𝐭 + 𝛃𝛃𝐭𝐭 = 𝟏𝟏,   𝐚𝐚𝐚𝐚𝐚𝐚𝐭𝐭𝐄𝐄 = 𝐚𝐚𝐚𝐚𝐚𝐚𝐭𝐭𝐭𝐭 𝛃𝛃𝛂𝛂 = 𝐭𝐭𝐭𝐭 = 𝛈𝛈. 
 

The limiting case, according to equality (*), we have when 𝐭𝐭𝐭𝐭𝛗𝛗 = 𝟏𝟏  or 𝛗𝛗 = 𝛑𝛑
𝐭𝐭, at which α and β obtain 

values α=0, β=1, corresponding to a perfectly plastic body. This result finds confirmation with the 
studies given in this paper, connected with the energy distribution in the presence of damping and 
without it, where the equality took place: η = arctg (1), by the example of considering the interaction 
of two identical rods. This condition was represented graphically as a sectorless line on the phase plane. 
Taking equality α+β=1 as the basis, and also taking into account that by analogy with the complex 
modulus of elasticity the complex velocity of propagation c* is connected with the loss factor by the 
following relation c* = c(1-i η/2), which gives the grounds for taking the energy conservation law as 
the second equality 
 

�̅�𝐐 + �̅�𝐑 = 𝟏𝟏;    (�̅�𝐐, �̅�𝐑 > 𝟎𝟎), 
 
where �̅�𝐐 and �̅�𝐑 are energy transition coefficients. 
 
From these two equalities, one, and, putting additionally that �̅�𝐐 = 𝐚𝐚𝐭𝐭; �̅�𝐑 = 𝐛𝐛𝐭𝐭, we show that with 
these related parameters, the formula 
 

𝐟𝐟(𝐐𝐐,𝐑𝐑,𝛈𝛈) = |𝐐𝐐𝛂𝛂 − 𝐑𝐑𝛃𝛃| 
 
does not exceed unity element, i.e. |𝐐𝐐𝛂𝛂 − 𝐑𝐑𝛃𝛃| ≤ 𝟏𝟏, accounting for losses. 
 
Indeed, multiplying the above equations term by term, we obtain   
 

𝐚𝐚𝐭𝐭𝛂𝛂𝐭𝐭 − 𝐚𝐚𝐭𝐭𝛃𝛃𝐭𝐭 + 𝐛𝐛𝐭𝐭𝛂𝛂𝐭𝐭 + 𝐛𝐛𝐭𝐭𝛃𝛃𝐭𝐭 = 𝟏𝟏 
 
or 
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Between α and β the conditions are fulfilled: modulus |𝐄𝐄∗| = 𝟏𝟏; argument 𝐄𝐄∗(𝐚𝐚𝐚𝐚𝐚𝐚𝐭𝐭𝐄𝐄∗ = 𝐭𝐭𝐭𝐭). 
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𝐭𝐭, at which α and β obtain 

values α=0, β=1, corresponding to a perfectly plastic body. This result finds confirmation with the 
studies given in this paper, connected with the energy distribution in the presence of damping and 
without it, where the equality took place: η = arctg (1), by the example of considering the interaction 
of two identical rods. This condition was represented graphically as a sectorless line on the phase plane. 
Taking equality α+β=1 as the basis, and also taking into account that by analogy with the complex 
modulus of elasticity the complex velocity of propagation c* is connected with the loss factor by the 
following relation c* = c(1-i η/2), which gives the grounds for taking the energy conservation law as 
the second equality 
 

�̅�𝐐 + �̅�𝐑 = 𝟏𝟏;    (�̅�𝐐, �̅�𝐑 > 𝟎𝟎), 
 
where �̅�𝐐 and �̅�𝐑 are energy transition coefficients. 
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𝐚𝐚𝟐𝟐𝛂𝛂𝟐𝟐 − 𝐚𝐚𝟐𝟐𝛃𝛃𝟐𝟐 + 𝐛𝐛𝟐𝟐𝛂𝛂𝟐𝟐 + 𝐛𝐛𝟐𝟐𝛃𝛃𝟐𝟐 + 𝟐𝟐𝐚𝐚𝐛𝐛𝛂𝛂𝛃𝛃 = 𝟏𝟏 

 
Whence (𝐚𝐚𝛂𝛂 − 𝐛𝐛𝛃𝛃)𝟐𝟐 + (𝐛𝐛𝛂𝛂 + 𝐚𝐚𝛃𝛃)𝟐𝟐 = 𝟏𝟏. 
 
Since (𝐛𝐛𝛂𝛂 − 𝐚𝐚𝛃𝛃)𝟐𝟐 ≥ 𝟎𝟎, we have (𝐚𝐚𝛂𝛂 − 𝐛𝐛𝛃𝛃)𝟐𝟐 ≤ 𝟏𝟏, hence we conclude that  
 

|√�̅�𝐐 ∙ 𝛂𝛂 − √�̅�𝐑 ∙ 𝛃𝛃| ≤ 𝟏𝟏, 
 
considering √�̅�𝐐 = 𝐐𝐐 and √�̅�𝐑 = 𝐑𝐑. 
 
The obtained last equation establishes the relationship between the transition coefficients Q and R 
and the loss factor η. 
 
It follows that taking into account the loss factor from the point of view of estimating energy absorption 
accelerates the process of establishing the stationary energy state by the system. Indeed, as shown 
earlier, the formula 
 

𝐖𝐖𝟎𝟎|𝐐𝐐− 𝐑𝐑|𝐧𝐧 = 𝐟𝐟(𝐧𝐧) 
 
represents the rate of change in the energy flux for each element of the system as a function of n = τ/T 
(the number of cycles at the moment of observation) in cases where energy losses were neglected. 
 
When losses are taken into account for the values of Q and R under consideration, the analogue of the 
latter expression is the expression 𝐖𝐖𝟎𝟎|𝐐𝐐𝛂𝛂− 𝐑𝐑𝛃𝛃|𝐧𝐧, corresponding to the loss-aware flow for the 
current values of n, which can only decrease as n passes. Let us show this by using the inequality: 
 

𝐟𝐟(𝐐𝐐,𝐑𝐑,𝛈𝛈 ) = |𝐐𝐐𝛂𝛂 − 𝐑𝐑𝛃𝛃| ≤ |𝐐𝐐 − 𝐑𝐑|. 
 
Let us estimate the values of α and β, whereby we present them as follows, given that η≪1  
 

𝟏𝟏 − 𝛈𝛈𝟐𝟐
𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟏𝟏 + 𝛈𝛈𝟐𝟐 − 𝟐𝟐𝛈𝛈𝟐𝟐

𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟏𝟏 − 𝟐𝟐𝛈𝛈𝟐𝟐
𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟏𝟏 − 𝟐𝟐𝛈𝛈𝟐𝟐(𝟏𝟏 + 𝛈𝛈𝟐𝟐)−𝟏𝟏 ≈ 𝟏𝟏 − 𝟐𝟐𝛈𝛈𝟐𝟐. 

 
Here in the expansion of the expression 𝟏𝟏

𝟏𝟏+𝛈𝛈𝟐𝟐 = (𝟏𝟏 + 𝛈𝛈𝟐𝟐)−𝟏𝟏, the first two terms are taken into account 
due to the smallness of η. 
 

𝛃𝛃 = 𝟐𝟐𝛈𝛈
𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟐𝟐

𝛈𝛈 + 𝟏𝟏
𝛈𝛈

, 

 
where we have β<1 since η+1/η>2 (η≠1). 
 
Thus, we find that α and β for any values of the loss factor η<1 are in the interval 
 

𝟎𝟎 < 𝛂𝛂 < 𝟏𝟏 
 
and 
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𝐟𝐟(𝐐𝐐,𝐑𝐑,𝛈𝛈 ) = |𝐐𝐐𝛂𝛂 − 𝐑𝐑𝛃𝛃| ≤ |𝐐𝐐 − 𝐑𝐑|. 
 
Let us estimate the values of α and β, whereby we present them as follows, given that η≪1  
 

𝟏𝟏 − 𝛈𝛈𝟐𝟐
𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟏𝟏 + 𝛈𝛈𝟐𝟐 − 𝟐𝟐𝛈𝛈𝟐𝟐

𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟏𝟏 − 𝟐𝟐𝛈𝛈𝟐𝟐
𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟏𝟏 − 𝟐𝟐𝛈𝛈𝟐𝟐(𝟏𝟏 + 𝛈𝛈𝟐𝟐)−𝟏𝟏 ≈ 𝟏𝟏 − 𝟐𝟐𝛈𝛈𝟐𝟐. 

 
Here in the expansion of the expression 𝟏𝟏

𝟏𝟏+𝛈𝛈𝟐𝟐 = (𝟏𝟏 + 𝛈𝛈𝟐𝟐)−𝟏𝟏, the first two terms are taken into account 
due to the smallness of η. 
 

𝛃𝛃 = 𝟐𝟐𝛈𝛈
𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟐𝟐

𝛈𝛈 + 𝟏𝟏
𝛈𝛈

, 

 
where we have β<1 since η+1/η>2 (η≠1). 
 
Thus, we find that α and β for any values of the loss factor η<1 are in the interval 
 

𝟎𝟎 < 𝛂𝛂 < 𝟏𝟏 
 
and 
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𝐚𝐚𝟐𝟐𝛂𝛂𝟐𝟐 − 𝐚𝐚𝟐𝟐𝛃𝛃𝟐𝟐 + 𝐛𝐛𝟐𝟐𝛂𝛂𝟐𝟐 + 𝐛𝐛𝟐𝟐𝛃𝛃𝟐𝟐 + 𝟐𝟐𝐚𝐚𝐛𝐛𝛂𝛂𝛃𝛃 = 𝟏𝟏 

 
Whence (𝐚𝐚𝛂𝛂 − 𝐛𝐛𝛃𝛃)𝟐𝟐 + (𝐛𝐛𝛂𝛂 + 𝐚𝐚𝛃𝛃)𝟐𝟐 = 𝟏𝟏. 
 
Since (𝐛𝐛𝛂𝛂 − 𝐚𝐚𝛃𝛃)𝟐𝟐 ≥ 𝟎𝟎, we have (𝐚𝐚𝛂𝛂 − 𝐛𝐛𝛃𝛃)𝟐𝟐 ≤ 𝟏𝟏, hence we conclude that  
 

|√�̅�𝐐 ∙ 𝛂𝛂 − √�̅�𝐑 ∙ 𝛃𝛃| ≤ 𝟏𝟏, 
 
considering √�̅�𝐐 = 𝐐𝐐 and √�̅�𝐑 = 𝐑𝐑. 
 
The obtained last equation establishes the relationship between the transition coefficients Q and R 
and the loss factor η. 
 
It follows that taking into account the loss factor from the point of view of estimating energy absorption 
accelerates the process of establishing the stationary energy state by the system. Indeed, as shown 
earlier, the formula 
 

𝐖𝐖𝟎𝟎|𝐐𝐐− 𝐑𝐑|𝐧𝐧 = 𝐟𝐟(𝐧𝐧) 
 
represents the rate of change in the energy flux for each element of the system as a function of n = τ/T 
(the number of cycles at the moment of observation) in cases where energy losses were neglected. 
 
When losses are taken into account for the values of Q and R under consideration, the analogue of the 
latter expression is the expression 𝐖𝐖𝟎𝟎|𝐐𝐐𝛂𝛂− 𝐑𝐑𝛃𝛃|𝐧𝐧, corresponding to the loss-aware flow for the 
current values of n, which can only decrease as n passes. Let us show this by using the inequality: 
 

𝐟𝐟(𝐐𝐐,𝐑𝐑,𝛈𝛈 ) = |𝐐𝐐𝛂𝛂 − 𝐑𝐑𝛃𝛃| ≤ |𝐐𝐐 − 𝐑𝐑|. 
 
Let us estimate the values of α and β, whereby we present them as follows, given that η≪1  
 

𝟏𝟏 − 𝛈𝛈𝟐𝟐
𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟏𝟏 + 𝛈𝛈𝟐𝟐 − 𝟐𝟐𝛈𝛈𝟐𝟐

𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟏𝟏 − 𝟐𝟐𝛈𝛈𝟐𝟐
𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟏𝟏 − 𝟐𝟐𝛈𝛈𝟐𝟐(𝟏𝟏 + 𝛈𝛈𝟐𝟐)−𝟏𝟏 ≈ 𝟏𝟏 − 𝟐𝟐𝛈𝛈𝟐𝟐. 

 
Here in the expansion of the expression 𝟏𝟏

𝟏𝟏+𝛈𝛈𝟐𝟐 = (𝟏𝟏 + 𝛈𝛈𝟐𝟐)−𝟏𝟏, the first two terms are taken into account 
due to the smallness of η. 
 

𝛃𝛃 = 𝟐𝟐𝛈𝛈
𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟐𝟐

𝛈𝛈 + 𝟏𝟏
𝛈𝛈

, 

 
where we have β<1 since η+1/η>2 (η≠1). 
 
Thus, we find that α and β for any values of the loss factor η<1 are in the interval 
 

𝟎𝟎 < 𝛂𝛂 < 𝟏𝟏 
 
and 
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𝐚𝐚𝟐𝟐𝛂𝛂𝟐𝟐 − 𝐚𝐚𝟐𝟐𝛃𝛃𝟐𝟐 + 𝐛𝐛𝟐𝟐𝛂𝛂𝟐𝟐 + 𝐛𝐛𝟐𝟐𝛃𝛃𝟐𝟐 + 𝟐𝟐𝐚𝐚𝐛𝐛𝛂𝛂𝛃𝛃 = 𝟏𝟏 

 
Whence (𝐚𝐚𝛂𝛂 − 𝐛𝐛𝛃𝛃)𝟐𝟐 + (𝐛𝐛𝛂𝛂 + 𝐚𝐚𝛃𝛃)𝟐𝟐 = 𝟏𝟏. 
 
Since (𝐛𝐛𝛂𝛂 − 𝐚𝐚𝛃𝛃)𝟐𝟐 ≥ 𝟎𝟎, we have (𝐚𝐚𝛂𝛂 − 𝐛𝐛𝛃𝛃)𝟐𝟐 ≤ 𝟏𝟏, hence we conclude that  
 

|√�̅�𝐐 ∙ 𝛂𝛂 − √�̅�𝐑 ∙ 𝛃𝛃| ≤ 𝟏𝟏, 
 
considering √�̅�𝐐 = 𝐐𝐐 and √�̅�𝐑 = 𝐑𝐑. 
 
The obtained last equation establishes the relationship between the transition coefficients Q and R 
and the loss factor η. 
 
It follows that taking into account the loss factor from the point of view of estimating energy absorption 
accelerates the process of establishing the stationary energy state by the system. Indeed, as shown 
earlier, the formula 
 

𝐖𝐖𝟎𝟎|𝐐𝐐− 𝐑𝐑|𝐧𝐧 = 𝐟𝐟(𝐧𝐧) 
 
represents the rate of change in the energy flux for each element of the system as a function of n = τ/T 
(the number of cycles at the moment of observation) in cases where energy losses were neglected. 
 
When losses are taken into account for the values of Q and R under consideration, the analogue of the 
latter expression is the expression 𝐖𝐖𝟎𝟎|𝐐𝐐𝛂𝛂− 𝐑𝐑𝛃𝛃|𝐧𝐧, corresponding to the loss-aware flow for the 
current values of n, which can only decrease as n passes. Let us show this by using the inequality: 
 

𝐟𝐟(𝐐𝐐,𝐑𝐑,𝛈𝛈 ) = |𝐐𝐐𝛂𝛂 − 𝐑𝐑𝛃𝛃| ≤ |𝐐𝐐 − 𝐑𝐑|. 
 
Let us estimate the values of α and β, whereby we present them as follows, given that η≪1  
 

𝟏𝟏 − 𝛈𝛈𝟐𝟐
𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟏𝟏 + 𝛈𝛈𝟐𝟐 − 𝟐𝟐𝛈𝛈𝟐𝟐

𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟏𝟏 − 𝟐𝟐𝛈𝛈𝟐𝟐
𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟏𝟏 − 𝟐𝟐𝛈𝛈𝟐𝟐(𝟏𝟏 + 𝛈𝛈𝟐𝟐)−𝟏𝟏 ≈ 𝟏𝟏 − 𝟐𝟐𝛈𝛈𝟐𝟐. 

 
Here in the expansion of the expression 𝟏𝟏

𝟏𝟏+𝛈𝛈𝟐𝟐 = (𝟏𝟏 + 𝛈𝛈𝟐𝟐)−𝟏𝟏, the first two terms are taken into account 
due to the smallness of η. 
 

𝛃𝛃 = 𝟐𝟐𝛈𝛈
𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟐𝟐

𝛈𝛈 + 𝟏𝟏
𝛈𝛈

, 

 
where we have β<1 since η+1/η>2 (η≠1). 
 
Thus, we find that α and β for any values of the loss factor η<1 are in the interval 
 

𝟎𝟎 < 𝛂𝛂 < 𝟏𝟏 
 
and 
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𝐚𝐚𝟐𝟐𝛂𝛂𝟐𝟐 − 𝐚𝐚𝟐𝟐𝛃𝛃𝟐𝟐 + 𝐛𝐛𝟐𝟐𝛂𝛂𝟐𝟐 + 𝐛𝐛𝟐𝟐𝛃𝛃𝟐𝟐 + 𝟐𝟐𝐚𝐚𝐛𝐛𝛂𝛂𝛃𝛃 = 𝟏𝟏 

 
Whence (𝐚𝐚𝛂𝛂 − 𝐛𝐛𝛃𝛃)𝟐𝟐 + (𝐛𝐛𝛂𝛂 + 𝐚𝐚𝛃𝛃)𝟐𝟐 = 𝟏𝟏. 
 
Since (𝐛𝐛𝛂𝛂 − 𝐚𝐚𝛃𝛃)𝟐𝟐 ≥ 𝟎𝟎, we have (𝐚𝐚𝛂𝛂 − 𝐛𝐛𝛃𝛃)𝟐𝟐 ≤ 𝟏𝟏, hence we conclude that  
 

|√�̅�𝐐 ∙ 𝛂𝛂 − √�̅�𝐑 ∙ 𝛃𝛃| ≤ 𝟏𝟏, 
 
considering √�̅�𝐐 = 𝐐𝐐 and √�̅�𝐑 = 𝐑𝐑. 
 
The obtained last equation establishes the relationship between the transition coefficients Q and R 
and the loss factor η. 
 
It follows that taking into account the loss factor from the point of view of estimating energy absorption 
accelerates the process of establishing the stationary energy state by the system. Indeed, as shown 
earlier, the formula 
 

𝐖𝐖𝟎𝟎|𝐐𝐐− 𝐑𝐑|𝐧𝐧 = 𝐟𝐟(𝐧𝐧) 
 
represents the rate of change in the energy flux for each element of the system as a function of n = τ/T 
(the number of cycles at the moment of observation) in cases where energy losses were neglected. 
 
When losses are taken into account for the values of Q and R under consideration, the analogue of the 
latter expression is the expression 𝐖𝐖𝟎𝟎|𝐐𝐐𝛂𝛂− 𝐑𝐑𝛃𝛃|𝐧𝐧, corresponding to the loss-aware flow for the 
current values of n, which can only decrease as n passes. Let us show this by using the inequality: 
 

𝐟𝐟(𝐐𝐐,𝐑𝐑,𝛈𝛈 ) = |𝐐𝐐𝛂𝛂 − 𝐑𝐑𝛃𝛃| ≤ |𝐐𝐐 − 𝐑𝐑|. 
 
Let us estimate the values of α and β, whereby we present them as follows, given that η≪1  
 

𝟏𝟏 − 𝛈𝛈𝟐𝟐
𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟏𝟏 + 𝛈𝛈𝟐𝟐 − 𝟐𝟐𝛈𝛈𝟐𝟐

𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟏𝟏 − 𝟐𝟐𝛈𝛈𝟐𝟐
𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟏𝟏 − 𝟐𝟐𝛈𝛈𝟐𝟐(𝟏𝟏 + 𝛈𝛈𝟐𝟐)−𝟏𝟏 ≈ 𝟏𝟏 − 𝟐𝟐𝛈𝛈𝟐𝟐. 

 
Here in the expansion of the expression 𝟏𝟏

𝟏𝟏+𝛈𝛈𝟐𝟐 = (𝟏𝟏 + 𝛈𝛈𝟐𝟐)−𝟏𝟏, the first two terms are taken into account 
due to the smallness of η. 
 

𝛃𝛃 = 𝟐𝟐𝛈𝛈
𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟐𝟐

𝛈𝛈 + 𝟏𝟏
𝛈𝛈

, 

 
where we have β<1 since η+1/η>2 (η≠1). 
 
Thus, we find that α and β for any values of the loss factor η<1 are in the interval 
 

𝟎𝟎 < 𝛂𝛂 < 𝟏𝟏 
 
and 
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𝐚𝐚𝟐𝟐𝛂𝛂𝟐𝟐 − 𝐚𝐚𝟐𝟐𝛃𝛃𝟐𝟐 + 𝐛𝐛𝟐𝟐𝛂𝛂𝟐𝟐 + 𝐛𝐛𝟐𝟐𝛃𝛃𝟐𝟐 + 𝟐𝟐𝐚𝐚𝐛𝐛𝛂𝛂𝛃𝛃 = 𝟏𝟏 

 
Whence (𝐚𝐚𝛂𝛂 − 𝐛𝐛𝛃𝛃)𝟐𝟐 + (𝐛𝐛𝛂𝛂 + 𝐚𝐚𝛃𝛃)𝟐𝟐 = 𝟏𝟏. 
 
Since (𝐛𝐛𝛂𝛂 − 𝐚𝐚𝛃𝛃)𝟐𝟐 ≥ 𝟎𝟎, we have (𝐚𝐚𝛂𝛂 − 𝐛𝐛𝛃𝛃)𝟐𝟐 ≤ 𝟏𝟏, hence we conclude that  
 

|√�̅�𝐐 ∙ 𝛂𝛂 − √�̅�𝐑 ∙ 𝛃𝛃| ≤ 𝟏𝟏, 
 
considering √�̅�𝐐 = 𝐐𝐐 and √�̅�𝐑 = 𝐑𝐑. 
 
The obtained last equation establishes the relationship between the transition coefficients Q and R 
and the loss factor η. 
 
It follows that taking into account the loss factor from the point of view of estimating energy absorption 
accelerates the process of establishing the stationary energy state by the system. Indeed, as shown 
earlier, the formula 
 

𝐖𝐖𝟎𝟎|𝐐𝐐− 𝐑𝐑|𝐧𝐧 = 𝐟𝐟(𝐧𝐧) 
 
represents the rate of change in the energy flux for each element of the system as a function of n = τ/T 
(the number of cycles at the moment of observation) in cases where energy losses were neglected. 
 
When losses are taken into account for the values of Q and R under consideration, the analogue of the 
latter expression is the expression 𝐖𝐖𝟎𝟎|𝐐𝐐𝛂𝛂− 𝐑𝐑𝛃𝛃|𝐧𝐧, corresponding to the loss-aware flow for the 
current values of n, which can only decrease as n passes. Let us show this by using the inequality: 
 

𝐟𝐟(𝐐𝐐,𝐑𝐑,𝛈𝛈 ) = |𝐐𝐐𝛂𝛂 − 𝐑𝐑𝛃𝛃| ≤ |𝐐𝐐 − 𝐑𝐑|. 
 
Let us estimate the values of α and β, whereby we present them as follows, given that η≪1  
 

𝟏𝟏 − 𝛈𝛈𝟐𝟐
𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟏𝟏 + 𝛈𝛈𝟐𝟐 − 𝟐𝟐𝛈𝛈𝟐𝟐

𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟏𝟏 − 𝟐𝟐𝛈𝛈𝟐𝟐
𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟏𝟏 − 𝟐𝟐𝛈𝛈𝟐𝟐(𝟏𝟏 + 𝛈𝛈𝟐𝟐)−𝟏𝟏 ≈ 𝟏𝟏 − 𝟐𝟐𝛈𝛈𝟐𝟐. 

 
Here in the expansion of the expression 𝟏𝟏

𝟏𝟏+𝛈𝛈𝟐𝟐 = (𝟏𝟏 + 𝛈𝛈𝟐𝟐)−𝟏𝟏, the first two terms are taken into account 
due to the smallness of η. 
 

𝛃𝛃 = 𝟐𝟐𝛈𝛈
𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟐𝟐

𝛈𝛈 + 𝟏𝟏
𝛈𝛈

, 

 
where we have β<1 since η+1/η>2 (η≠1). 
 
Thus, we find that α and β for any values of the loss factor η<1 are in the interval 
 

𝟎𝟎 < 𝛂𝛂 < 𝟏𝟏 
 
and 
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𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 = 𝐭𝐭𝐭𝐭𝐭𝐭𝛗𝛗
𝟏𝟏 − 𝐭𝐭𝐭𝐭𝐭𝐭𝛗𝛗 = 𝛃𝛃

𝛂𝛂 ; 

𝐭𝐭𝐭𝐭 = 𝐚𝐚𝐚𝐚𝐚𝐚𝐭𝐭𝐭𝐭 𝛃𝛃𝛂𝛂. 

 
Given that the tangent of the phase angle corresponds to the loss factor, we can write: 
 

𝛂𝛂 = 𝟏𝟏 − 𝛗𝛗𝐭𝐭

𝟏𝟏 + 𝛗𝛗𝐭𝐭 ; 

𝛃𝛃 = 𝐭𝐭𝐭𝐭
𝟏𝟏 + 𝛗𝛗𝐭𝐭, 

 
and 24 = arctg η = η, where 𝛗𝛗 = 𝛈𝛈/𝐭𝐭. 
 
From this we obtain that 𝛗𝛗 is the coefficient of internal friction per half-period, corresponding to half 
of the loss coefficient per cycle. 
 
Between α and β the conditions are fulfilled: modulus |𝐄𝐄∗| = 𝟏𝟏; argument 𝐄𝐄∗(𝐚𝐚𝐚𝐚𝐚𝐚𝐭𝐭𝐄𝐄∗ = 𝐭𝐭𝐭𝐭). 
 
The transformations give:  

|𝐄𝐄∗| = √𝛂𝛂𝐭𝐭 + 𝛃𝛃𝐭𝐭 = 𝟏𝟏,   𝐚𝐚𝐚𝐚𝐚𝐚𝐭𝐭𝐄𝐄 = 𝐚𝐚𝐚𝐚𝐚𝐚𝐭𝐭𝐭𝐭 𝛃𝛃𝛂𝛂 = 𝐭𝐭𝐭𝐭 = 𝛈𝛈. 
 

The limiting case, according to equality (*), we have when 𝐭𝐭𝐭𝐭𝛗𝛗 = 𝟏𝟏  or 𝛗𝛗 = 𝛑𝛑
𝐭𝐭, at which α and β obtain 

values α=0, β=1, corresponding to a perfectly plastic body. This result finds confirmation with the 
studies given in this paper, connected with the energy distribution in the presence of damping and 
without it, where the equality took place: η = arctg (1), by the example of considering the interaction 
of two identical rods. This condition was represented graphically as a sectorless line on the phase plane. 
Taking equality α+β=1 as the basis, and also taking into account that by analogy with the complex 
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or 
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𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 = 𝐭𝐭𝐭𝐭𝐭𝐭𝛗𝛗
𝟏𝟏 − 𝐭𝐭𝐭𝐭𝐭𝐭𝛗𝛗 = 𝛃𝛃

𝛂𝛂 ; 

𝐭𝐭𝐭𝐭 = 𝐚𝐚𝐚𝐚𝐚𝐚𝐭𝐭𝐭𝐭 𝛃𝛃𝛂𝛂. 

 
Given that the tangent of the phase angle corresponds to the loss factor, we can write: 
 

𝛂𝛂 = 𝟏𝟏 − 𝛗𝛗𝐭𝐭

𝟏𝟏 + 𝛗𝛗𝐭𝐭 ; 

𝛃𝛃 = 𝐭𝐭𝐭𝐭
𝟏𝟏 + 𝛗𝛗𝐭𝐭, 

 
and 24 = arctg η = η, where 𝛗𝛗 = 𝛈𝛈/𝐭𝐭. 
 
From this we obtain that 𝛗𝛗 is the coefficient of internal friction per half-period, corresponding to half 
of the loss coefficient per cycle. 
 
Between α and β the conditions are fulfilled: modulus |𝐄𝐄∗| = 𝟏𝟏; argument 𝐄𝐄∗(𝐚𝐚𝐚𝐚𝐚𝐚𝐭𝐭𝐄𝐄∗ = 𝐭𝐭𝐭𝐭). 
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|𝐄𝐄∗| = √𝛂𝛂𝐭𝐭 + 𝛃𝛃𝐭𝐭 = 𝟏𝟏,   𝐚𝐚𝐚𝐚𝐚𝐚𝐭𝐭𝐄𝐄 = 𝐚𝐚𝐚𝐚𝐚𝐚𝐭𝐭𝐭𝐭 𝛃𝛃𝛂𝛂 = 𝐭𝐭𝐭𝐭 = 𝛈𝛈. 
 

The limiting case, according to equality (*), we have when 𝐭𝐭𝐭𝐭𝛗𝛗 = 𝟏𝟏  or 𝛗𝛗 = 𝛑𝛑
𝐭𝐭, at which α and β obtain 

values α=0, β=1, corresponding to a perfectly plastic body. This result finds confirmation with the 
studies given in this paper, connected with the energy distribution in the presence of damping and 
without it, where the equality took place: η = arctg (1), by the example of considering the interaction 
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the second equality 
 

�̅�𝐐 + �̅�𝐑 = 𝟏𝟏;    (�̅�𝐐, �̅�𝐑 > 𝟎𝟎), 
 
where �̅�𝐐 and �̅�𝐑 are energy transition coefficients. 
 
From these two equalities, one, and, putting additionally that �̅�𝐐 = 𝐚𝐚𝐭𝐭; �̅�𝐑 = 𝐛𝐛𝐭𝐭, we show that with 
these related parameters, the formula 
 

𝐟𝐟(𝐐𝐐,𝐑𝐑,𝛈𝛈) = |𝐐𝐐𝛂𝛂 − 𝐑𝐑𝛃𝛃| 
 
does not exceed unity element, i.e. |𝐐𝐐𝛂𝛂 − 𝐑𝐑𝛃𝛃| ≤ 𝟏𝟏, accounting for losses. 
 
Indeed, multiplying the above equations term by term, we obtain   
 

𝐚𝐚𝐭𝐭𝛂𝛂𝐭𝐭 − 𝐚𝐚𝐭𝐭𝛃𝛃𝐭𝐭 + 𝐛𝐛𝐭𝐭𝛂𝛂𝐭𝐭 + 𝐛𝐛𝐭𝐭𝛃𝛃𝐭𝐭 = 𝟏𝟏 
 
or 
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However, its value will be closer to the lowest number. 
 
To summarize, it should be mentioned that in a mechanical system, it is advisable to first impose 
conditions on the change of losses in the system elements having the greatest potential energy. 
 
At the same time, the limiting total estimation of the value of energy losses in the mechanical system 
does not influence the character of energy distribution within the system and at the same time, as it is 
established in work, the presence of losses accelerates the process of approach in system of an energy 
stationary state at which energy exchange between its elements stops. 
 
It is known that the loss factor, the inverse of the Q-value system, corresponds to the tangent of the 
phase angle (𝛗𝛗). For most materials used in engineering, the angle tangent can be replaced by the 
value of the total angle due to the smallness of its values, so that 
 

𝛈𝛈 = 𝐭𝐭𝐭𝐭𝛗𝛗 ≈ 𝛗𝛗. 
 
Since losses are caused by internal friction in the suppression elements of which the material is made, 
this makes it possible to consider them dependent on each other, at the same time, the stiffness factor 
(the value inverse of the suppression) is proportional to the elastic modulus, and therefore the elastic 
and dissipative properties of the suppression element can be characterized by the elasticity complex, 
which allows to write the equality 
 

𝐄𝐄∗ = �̅�𝐄 = 𝐄𝐄𝟎𝟎 + 𝐢𝐢𝐄𝐄𝟎𝟎, ≈ 𝐄𝐄𝟎𝟎(𝟏𝟏 + 𝐢𝐢𝛈𝛈). (11) 
 
This equality is true to within an order of η2by virtue of the expansion, and since η≪1, the values E0 
and |�̅�𝐄| = 𝐄𝐄𝟎𝟎√𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝐄𝐄, should be considered equal between themselves, so the zero index of E 
can be omitted to account for the real part. 
 
In accordance with this complex modulus of elasticity let us write it in the form: 
 

𝐄𝐄∗ = 𝐄𝐄(𝛂𝛂 + 𝐢𝐢𝛃𝛃) = 𝐄𝐄 (𝟏𝟏 + 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗
𝟏𝟏 − 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗), (12) 

 
where 𝛗𝛗 is the phase angle when losses are taken into account. 
 
By multiplying the numerator and denominator by the conjugate significant expression (𝟏𝟏 + 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗) we 
successively obtain: 
 

𝐄𝐄(𝛂𝛂 + 𝐢𝐢𝛃𝛃) = 𝐄𝐄 (𝟏𝟏 + 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗
𝟏𝟏 − 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗 ∙ 𝟏𝟏 + 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗

𝟏𝟏 + 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗) = 𝐄𝐄
(𝟏𝟏 + 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗)𝟐𝟐
𝟏𝟏 + 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗 = 𝐄𝐄(𝟏𝟏 − 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗

𝟏𝟏 + 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗 + 𝐢𝐢 𝟐𝟐𝐭𝐭𝐭𝐭𝛗𝛗
𝟏𝟏 + 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗). 

(13) 

 
Then for equality of complex quantities we must have: 
 

(∗)𝛂𝛂 = 𝟏𝟏 − 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗
𝟏𝟏 + 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗 = 𝐜𝐜𝐜𝐜𝐜𝐜𝟐𝟐𝐜𝐜; 

𝛃𝛃 = 𝟐𝟐𝐭𝐭𝐭𝐭𝛗𝛗
𝟏𝟏 + 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗 = 𝐜𝐜𝐢𝐢𝐬𝐬𝟐𝟐𝐜𝐜; 
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conditions on the change of losses in the system elements having the greatest potential energy. 
 
At the same time, the limiting total estimation of the value of energy losses in the mechanical system 
does not influence the character of energy distribution within the system and at the same time, as it is 
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stationary state at which energy exchange between its elements stops. 
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Since losses are caused by internal friction in the suppression elements of which the material is made, 
this makes it possible to consider them dependent on each other, at the same time, the stiffness factor 
(the value inverse of the suppression) is proportional to the elastic modulus, and therefore the elastic 
and dissipative properties of the suppression element can be characterized by the elasticity complex, 
which allows to write the equality 
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where 𝛗𝛗 is the phase angle when losses are taken into account. 
 
By multiplying the numerator and denominator by the conjugate significant expression (𝟏𝟏 + 𝐢𝐢𝐭𝐭𝐭𝐭𝛗𝛗) we 
successively obtain: 
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(13) 

 
Then for equality of complex quantities we must have: 
 

(∗)𝛂𝛂 = 𝟏𝟏 − 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗
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𝛃𝛃 = 𝟐𝟐𝐭𝐭𝐭𝐭𝛗𝛗
𝟏𝟏 + 𝐭𝐭𝐭𝐭𝟐𝟐𝛗𝛗 = 𝐜𝐜𝐢𝐢𝐬𝐬𝟐𝟐𝐜𝐜; 
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4. CONCLUSIONS

Physically, the last inequality means that for all possible cases 
of interaction of bars included in bar systems, the stationary 
energy equilibrium state for the system considering the inter-
nal energy losses will come earlier than without considering 
the latter, as it follows from the analysis of the energy direct 
image problems considered in the paper.

It was also presented that as a result of carried out an analy-
sis of the bar elements system, each of them acquired a certain 
amount of energy in the time required for this purpose.

With further increase of time, as the results suggest the 
elements stop exchanging energy, which corresponds to the 
onset of the moment of stable oscillations of the system, co-
rresponding to the eigenforms.

When losses are taken into account for the values of Q and R 
under consideration, the analogue of the latter expression is 
the expression   corresponding to the loss-aware 
flow for the current values of n, which can only decrease as n 
passes. Let us show this by using the inequality:

Let us estimate the values of α and β, whereby we present 
them as follows, given that η«1

Here in the expansion of the expression   t h e 
first two terms are taken into account due to the smallness of 
η.

where we have β<1 since η+1/η>2 (η≠1).

Thus, we find that α and β for any values of the loss factor η<1 
are in the interval

and

And hence we conclude that

wherefore

      (14)
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𝐚𝐚𝟐𝟐𝛂𝛂𝟐𝟐 − 𝐚𝐚𝟐𝟐𝛃𝛃𝟐𝟐 + 𝐛𝐛𝟐𝟐𝛂𝛂𝟐𝟐 + 𝐛𝐛𝟐𝟐𝛃𝛃𝟐𝟐 + 𝟐𝟐𝐚𝐚𝐛𝐛𝛂𝛂𝛃𝛃 = 𝟏𝟏 

 
Whence (𝐚𝐚𝛂𝛂 − 𝐛𝐛𝛃𝛃)𝟐𝟐 + (𝐛𝐛𝛂𝛂 + 𝐚𝐚𝛃𝛃)𝟐𝟐 = 𝟏𝟏. 
 
Since (𝐛𝐛𝛂𝛂 − 𝐚𝐚𝛃𝛃)𝟐𝟐 ≥ 𝟎𝟎, we have (𝐚𝐚𝛂𝛂 − 𝐛𝐛𝛃𝛃)𝟐𝟐 ≤ 𝟏𝟏, hence we conclude that  
 

|√�̅�𝐐 ∙ 𝛂𝛂 − √�̅�𝐑 ∙ 𝛃𝛃| ≤ 𝟏𝟏, 
 
considering √�̅�𝐐 = 𝐐𝐐 and √�̅�𝐑 = 𝐑𝐑. 
 
The obtained last equation establishes the relationship between the transition coefficients Q and R 
and the loss factor η. 
 
It follows that taking into account the loss factor from the point of view of estimating energy absorption 
accelerates the process of establishing the stationary energy state by the system. Indeed, as shown 
earlier, the formula 
 

𝐖𝐖𝟎𝟎|𝐐𝐐− 𝐑𝐑|𝐧𝐧 = 𝐟𝐟(𝐧𝐧) 
 
represents the rate of change in the energy flux for each element of the system as a function of n = τ/T 
(the number of cycles at the moment of observation) in cases where energy losses were neglected. 
 
When losses are taken into account for the values of Q and R under consideration, the analogue of the 
latter expression is the expression 𝐖𝐖𝟎𝟎|𝐐𝐐𝛂𝛂− 𝐑𝐑𝛃𝛃|𝐧𝐧, corresponding to the loss-aware flow for the 
current values of n, which can only decrease as n passes. Let us show this by using the inequality: 
 

𝐟𝐟(𝐐𝐐,𝐑𝐑,𝛈𝛈 ) = |𝐐𝐐𝛂𝛂 − 𝐑𝐑𝛃𝛃| ≤ |𝐐𝐐 − 𝐑𝐑|. 
 
Let us estimate the values of α and β, whereby we present them as follows, given that η≪1  
 

𝟏𝟏 − 𝛈𝛈𝟐𝟐
𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟏𝟏 + 𝛈𝛈𝟐𝟐 − 𝟐𝟐𝛈𝛈𝟐𝟐

𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟏𝟏 − 𝟐𝟐𝛈𝛈𝟐𝟐
𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟏𝟏 − 𝟐𝟐𝛈𝛈𝟐𝟐(𝟏𝟏 + 𝛈𝛈𝟐𝟐)−𝟏𝟏 ≈ 𝟏𝟏 − 𝟐𝟐𝛈𝛈𝟐𝟐. 

 
Here in the expansion of the expression 𝟏𝟏

𝟏𝟏+𝛈𝛈𝟐𝟐 = (𝟏𝟏 + 𝛈𝛈𝟐𝟐)−𝟏𝟏, the first two terms are taken into account 
due to the smallness of η. 
 

𝛃𝛃 = 𝟐𝟐𝛈𝛈
𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟐𝟐

𝛈𝛈 + 𝟏𝟏
𝛈𝛈

, 

 
where we have β<1 since η+1/η>2 (η≠1). 
 
Thus, we find that α and β for any values of the loss factor η<1 are in the interval 
 

𝟎𝟎 < 𝛂𝛂 < 𝟏𝟏 
 
and 
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𝟏𝟏+𝛈𝛈𝟐𝟐 = (𝟏𝟏 + 𝛈𝛈𝟐𝟐)−𝟏𝟏, the first two terms are taken into account 
due to the smallness of η. 
 

𝛃𝛃 = 𝟐𝟐𝛈𝛈
𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟐𝟐

𝛈𝛈 + 𝟏𝟏
𝛈𝛈
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where we have β<1 since η+1/η>2 (η≠1). 
 
Thus, we find that α and β for any values of the loss factor η<1 are in the interval 
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where we have β<1 since η+1/η>2 (η≠1). 
 
Thus, we find that α and β for any values of the loss factor η<1 are in the interval 
 

𝟎𝟎 < 𝛂𝛂 < 𝟏𝟏 
 
and 

Journal Akustika  VOLUME 41/November 2021 
 

Page 7 of 8 

 
𝟎𝟎 < 𝛃𝛃 < 𝟏𝟏 

 
And hence we conclude that |𝐐𝐐𝛂𝛂 − 𝐑𝐑𝛃𝛃| ≤ |𝐐𝐐 − 𝐑𝐑|, 
 
wherefore  
 

𝐖𝐖𝟎𝟎|𝐐𝐐𝛂𝛂− 𝐑𝐑𝛃𝛃|𝐧𝐧 ≤ 𝐖𝐖𝟎𝟎|𝐐𝐐− 𝐑𝐑|𝐧𝐧. (14) 
 

 
4. CONCLUSIONS 
 
Physically, the last inequality means that for all possible cases of interaction of bars included in bar 
systems, the stationary energy equilibrium state for the system considering the internal energy losses 
will come earlier than without considering the latter, as it follows from the analysis of the energy direct 
image problems considered in the paper. 
 
It was also presented that as a result of carried out an analysis of the bar elements system, each of 
them acquired a certain amount of energy in the time required for this purpose. 
 
With further increase of time, as the results suggest the elements stop exchanging energy, which 
corresponds to the onset of the moment of stable oscillations of the system, corresponding to the 
eigenforms. 
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𝐚𝐚𝟐𝟐𝛂𝛂𝟐𝟐 − 𝐚𝐚𝟐𝟐𝛃𝛃𝟐𝟐 + 𝐛𝐛𝟐𝟐𝛂𝛂𝟐𝟐 + 𝐛𝐛𝟐𝟐𝛃𝛃𝟐𝟐 + 𝟐𝟐𝐚𝐚𝐛𝐛𝛂𝛂𝛃𝛃 = 𝟏𝟏 

 
Whence (𝐚𝐚𝛂𝛂 − 𝐛𝐛𝛃𝛃)𝟐𝟐 + (𝐛𝐛𝛂𝛂 + 𝐚𝐚𝛃𝛃)𝟐𝟐 = 𝟏𝟏. 
 
Since (𝐛𝐛𝛂𝛂 − 𝐚𝐚𝛃𝛃)𝟐𝟐 ≥ 𝟎𝟎, we have (𝐚𝐚𝛂𝛂 − 𝐛𝐛𝛃𝛃)𝟐𝟐 ≤ 𝟏𝟏, hence we conclude that  
 

|√�̅�𝐐 ∙ 𝛂𝛂 − √�̅�𝐑 ∙ 𝛃𝛃| ≤ 𝟏𝟏, 
 
considering √�̅�𝐐 = 𝐐𝐐 and √�̅�𝐑 = 𝐑𝐑. 
 
The obtained last equation establishes the relationship between the transition coefficients Q and R 
and the loss factor η. 
 
It follows that taking into account the loss factor from the point of view of estimating energy absorption 
accelerates the process of establishing the stationary energy state by the system. Indeed, as shown 
earlier, the formula 
 

𝐖𝐖𝟎𝟎|𝐐𝐐− 𝐑𝐑|𝐧𝐧 = 𝐟𝐟(𝐧𝐧) 
 
represents the rate of change in the energy flux for each element of the system as a function of n = τ/T 
(the number of cycles at the moment of observation) in cases where energy losses were neglected. 
 
When losses are taken into account for the values of Q and R under consideration, the analogue of the 
latter expression is the expression 𝐖𝐖𝟎𝟎|𝐐𝐐𝛂𝛂− 𝐑𝐑𝛃𝛃|𝐧𝐧, corresponding to the loss-aware flow for the 
current values of n, which can only decrease as n passes. Let us show this by using the inequality: 
 

𝐟𝐟(𝐐𝐐,𝐑𝐑,𝛈𝛈 ) = |𝐐𝐐𝛂𝛂 − 𝐑𝐑𝛃𝛃| ≤ |𝐐𝐐 − 𝐑𝐑|. 
 
Let us estimate the values of α and β, whereby we present them as follows, given that η≪1  
 

𝟏𝟏 − 𝛈𝛈𝟐𝟐
𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟏𝟏 + 𝛈𝛈𝟐𝟐 − 𝟐𝟐𝛈𝛈𝟐𝟐

𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟏𝟏 − 𝟐𝟐𝛈𝛈𝟐𝟐
𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟏𝟏 − 𝟐𝟐𝛈𝛈𝟐𝟐(𝟏𝟏 + 𝛈𝛈𝟐𝟐)−𝟏𝟏 ≈ 𝟏𝟏 − 𝟐𝟐𝛈𝛈𝟐𝟐. 

 
Here in the expansion of the expression 𝟏𝟏

𝟏𝟏+𝛈𝛈𝟐𝟐 = (𝟏𝟏 + 𝛈𝛈𝟐𝟐)−𝟏𝟏, the first two terms are taken into account 
due to the smallness of η. 
 

𝛃𝛃 = 𝟐𝟐𝛈𝛈
𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟐𝟐

𝛈𝛈 + 𝟏𝟏
𝛈𝛈

, 

 
where we have β<1 since η+1/η>2 (η≠1). 
 
Thus, we find that α and β for any values of the loss factor η<1 are in the interval 
 

𝟎𝟎 < 𝛂𝛂 < 𝟏𝟏 
 
and 
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Here in the expansion of the expression 𝟏𝟏

𝟏𝟏+𝛈𝛈𝟐𝟐 = (𝟏𝟏 + 𝛈𝛈𝟐𝟐)−𝟏𝟏, the first two terms are taken into account 
due to the smallness of η. 
 

𝛃𝛃 = 𝟐𝟐𝛈𝛈
𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟐𝟐

𝛈𝛈 + 𝟏𝟏
𝛈𝛈

, 

 
where we have β<1 since η+1/η>2 (η≠1). 
 
Thus, we find that α and β for any values of the loss factor η<1 are in the interval 
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𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟏𝟏 − 𝟐𝟐𝛈𝛈𝟐𝟐(𝟏𝟏 + 𝛈𝛈𝟐𝟐)−𝟏𝟏 ≈ 𝟏𝟏 − 𝟐𝟐𝛈𝛈𝟐𝟐. 

 
Here in the expansion of the expression 𝟏𝟏

𝟏𝟏+𝛈𝛈𝟐𝟐 = (𝟏𝟏 + 𝛈𝛈𝟐𝟐)−𝟏𝟏, the first two terms are taken into account 
due to the smallness of η. 
 

𝛃𝛃 = 𝟐𝟐𝛈𝛈
𝟏𝟏 + 𝛈𝛈𝟐𝟐 = 𝟐𝟐

𝛈𝛈 + 𝟏𝟏
𝛈𝛈

, 

 
where we have β<1 since η+1/η>2 (η≠1). 
 
Thus, we find that α and β for any values of the loss factor η<1 are in the interval 
 

𝟎𝟎 < 𝛂𝛂 < 𝟏𝟏 
 
and 
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