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In the selected coordinate system, the latter equations will 
take the form:

(3)

3. RESULTS AND DISCUSSION

Thus, it is established that for longitudinal oscillations, the 
system splits into a number of separate invariant subspaces, 
which are independent solutions with eigenvalues ai(I,II), de-
scribing eigen-oscillations in each of them.

At the same time, if each of the forms U(I,II) (x) that determi-
ne the potential energies of the rods is positive definite, then 
all ak

(I,II) are positive. Then the considered point x (vector X), 
in each of the corresponding invariant subspaces, performs 
n independent oscillations along n mutually perpendicu-
lar directions in the corresponding bases selected in them:  
e1

(I,II); e2
(I,II); …, en (I,II). These oscillations are called the main or 

eigen-oscillations, and the numbers ωk
(I,II) are the eigen-fre-

quencies of vibrations for each individual element.

The eigen-frequencies can be found based on the equation 
of motion of a rod conjugated to another rod:

           (4)

We are looking for a solution in the form of a product of two 
functions, one of which depends only on x, and the other de-
pends only on t:

            (4a)

1. INTRODUCTION

In the steady-state mode, the energy distribution in the rod 
system is carried out in accordance with the potential energy 
of each of the system elements. In other words, there are no 
energy flows through the boundaries of the elements in the 
system.

2. EQUIPMENT AND DEVICES USED IN THE 
RESEARCH

The boundaries of the elements in the system do not perform 
any work and, therefore, mechanical vibrations can be deter-
mined. Independent components that determine the poten-
tial energy distribution among the elements of the system can 
be reduced by some orthogonal transformation to the main 
(normal) axes. There is an orthogonal basis in 
which is written as:

              (1)

where
x is a vector of dimension n and when decomposed by basis 

vectors:

For each of the system rods.

Here
x1, x2...xn are the coordinates of the vector x in the selected 

basis.

Thus, for example, when working with a rod system that co-
rresponds to a differential equation.

             (2)
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𝑼𝑼𝒊𝒊,𝑰𝑰𝑰𝑰(�̅�𝒙) = 𝟏𝟏
𝟐𝟐∑ 𝒂𝒂𝑲𝑲𝑰𝑰,𝑰𝑰𝑰𝑰

𝒏𝒏

𝑲𝑲=𝟏𝟏
𝒙𝒙𝑲𝑲𝟐𝟐  , 

(1) 

 
where �̅�𝒙 is a vector of dimension n and when decomposed by basis vectors: 
 

�̅�𝒙 = 𝒙𝒙𝟏𝟏𝒆𝒆𝟏𝟏̅̅ ̅ + 𝒙𝒙𝟐𝟐𝒆𝒆𝟐𝟐̅̅ ̅ + ⋯+ 𝒙𝒙𝒏𝒏𝒆𝒆𝒏𝒏̅̅ ̅  . 
 
For each of the system rods. 
 
Here x1, x2...xn are the coordinates of the vector x in the selected basis. 
 
Thus, for example, when working with a rod system that corresponds to a differential equation. 
 

�̈̅�𝒙(𝑰𝑰,𝑰𝑰𝑰𝑰) = −𝒈𝒈𝒈𝒈𝒂𝒂𝒈𝒈̅̅ ̅̅ ̅̅ ̅̅ 𝑼𝑼𝑰𝑰,𝑰𝑰𝑰𝑰. (2) 
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Thus, it is established that for longitudinal oscillations, the system splits into a number of separate 
invariant subspaces, which are independent solutions with eigenvalues ai(I,II), describing eigen-
oscillations in each of them. 
 
At the same time, if each of the forms U(I,II) (x) that determine the potential energies of the rods is 
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oscillations are called the main or eigen-oscillations, and the numbers 𝝎𝝎𝒌𝒌(I,II) are the eigen-
frequencies of vibrations for each individual element. 
 
The eigen-frequencies can be found based on the equation of motion of a rod conjugated to another 
rod: 
 

𝝏𝝏𝟐𝟐𝒖𝒖
𝝏𝝏𝒕𝒕𝟐𝟐 − 𝒄𝒄𝟐𝟐 𝝏𝝏

𝟐𝟐𝒖𝒖
𝝏𝝏𝒙𝒙𝟐𝟐 = −𝒌𝒌𝒖𝒖            𝑜𝑜𝑜𝑜 

(4) 

𝒄𝒄𝟐𝟐 𝝏𝝏
𝟐𝟐𝒖𝒖
𝝏𝝏𝒙𝒙𝟐𝟐 − 𝒌𝒌𝒖𝒖 = 𝝏𝝏𝟐𝟐𝒖𝒖

𝝏𝝏𝒕𝒕𝟐𝟐 . 
 

 

 
We are looking for a solution in the form of a product of two functions, one of which depends only on 
x, and the other depends only on t: 
 

𝑼𝑼(𝒙𝒙, 𝒕𝒕) = 𝑿𝑿(𝒙𝒙)𝑻𝑻(𝒕𝒕). (4a) 
 
Substituting (4a) into (4) gives: 
 

𝒄𝒄𝟐𝟐𝑻𝑻(𝒕𝒕) ∙ 𝒙𝒙𝑰𝑰𝑰𝑰(𝒙𝒙) − 𝒌𝒌 ∙ 𝑿𝑿(𝒙𝒙)𝑻𝑻(𝒕𝒕) = 𝑿𝑿(𝒙𝒙) ∙ 𝑻𝑻𝑰𝑰𝑰𝑰(𝒕𝒕)             𝑜𝑜𝑜𝑜  
𝒄𝒄𝟐𝟐𝑿𝑿𝑰𝑰𝑰𝑰(𝒙𝒙) − 𝒌𝒌/𝑿𝑿(𝒙𝒙)

𝑿𝑿(𝒙𝒙) = 𝑻𝑻𝑰𝑰𝑰𝑰(𝒕𝒕)
𝑻𝑻(𝒕𝒕) . 

(4b) 

  
The left part of this equality does not depend on t, the right - on x, therefore, their total value does 
not depend on either x or t, and therefore reduces to a constant, which we take in the form −𝒄𝒄𝟐𝟐𝝀𝝀𝟐𝟐 
(for λ>0). Then equation 4b decomposes into two ordinary differential equations: 
 

𝑻𝑻,,(𝒕𝒕) + 𝒄𝒄𝟐𝟐𝝀𝝀𝟐𝟐𝑻𝑻(𝒕𝒕) = 𝟎𝟎; (a) 
𝒄𝒄𝟐𝟐𝒙𝒙,,(𝒙𝒙)− 𝒌𝒌𝑿𝑿(𝒙𝒙) + 𝒄𝒄𝟐𝟐𝝀𝝀𝟐𝟐𝑿𝑿(𝒙𝒙). (b) 

   
Their solution (general integrals) have the form:  
for a) 

𝑻𝑻(𝒕𝒕) = 𝑨𝑨𝒄𝒄𝑨𝑨𝑨𝑨(𝒄𝒄𝝀𝝀𝒕𝒕) + 𝑩𝑩𝑨𝑨𝑩𝑩𝑩𝑩(𝒄𝒄𝝀𝝀𝒕𝒕). 
 

To solve equation b), the boundary conditions on the left and right ends should be taken into 
account: 
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1. INTRODUCTION 
 
In the steady-state mode, the energy distribution in the rod system is carried out in accordance with 
the potential energy of each of the system elements. In other words, there are no energy flows 
through the boundaries of the elements in the system. 

 

2. EQUIPMENT AND DEVICES USED IN THE RESEARCH 
 
The boundaries of the elements in the system do not perform any work and, therefore, mechanical 
vibrations can be determined. Independent components that determine the potential energy 
distribution among the elements of the system can be reduced by some orthogonal transformation 
to the main (normal) axes. There is an orthogonal basis {𝒆𝒆𝟏𝟏̅̅ ̅, 𝒆𝒆𝟐𝟐̅̅ ̅, … , 𝒆𝒆𝒏𝒏̅̅ ̅ }, in which 𝑼𝑼𝒊𝒊,𝑰𝑰𝑰𝑰 is written as: 
 

𝑼𝑼𝒊𝒊,𝑰𝑰𝑰𝑰(�̅�𝒙) = 𝟏𝟏
𝟐𝟐∑ 𝒂𝒂𝑲𝑲𝑰𝑰,𝑰𝑰𝑰𝑰

𝒏𝒏

𝑲𝑲=𝟏𝟏
𝒙𝒙𝑲𝑲𝟐𝟐  , 

(1) 

 
where �̅�𝒙 is a vector of dimension n and when decomposed by basis vectors: 
 

�̅�𝒙 = 𝒙𝒙𝟏𝟏𝒆𝒆𝟏𝟏̅̅ ̅ + 𝒙𝒙𝟐𝟐𝒆𝒆𝟐𝟐̅̅ ̅ + ⋯+ 𝒙𝒙𝒏𝒏𝒆𝒆𝒏𝒏̅̅ ̅  . 
 
For each of the system rods. 
 
Here x1, x2...xn are the coordinates of the vector x in the selected basis. 
 
Thus, for example, when working with a rod system that corresponds to a differential equation. 
 

�̈̅�𝒙(𝑰𝑰,𝑰𝑰𝑰𝑰) = −𝒈𝒈𝒈𝒈𝒂𝒂𝒈𝒈̅̅ ̅̅ ̅̅ ̅̅ 𝑼𝑼𝑰𝑰,𝑰𝑰𝑰𝑰. (2) 
 
In the selected coordinate system, the latter equations will take the form: 
 

�̈̅�𝒙𝟏𝟏𝑰𝑰 = −𝒂𝒂𝟏𝟏𝑰𝑰 𝒙𝒙𝟏𝟏𝑰𝑰  ;       �̈̅�𝒙𝟐𝟐𝑰𝑰 = −𝒂𝒂𝟐𝟐𝑰𝑰𝒙𝒙𝟐𝟐𝑰𝑰  ;     …     �̈�𝒙𝒏𝒏𝑰𝑰 = −𝒂𝒂𝒏𝒏𝑰𝑰 𝒙𝒙𝒏𝒏𝑰𝑰 ; (3) �̈̅�𝒙𝟏𝟏𝑰𝑰𝑰𝑰 = −𝒂𝒂𝟏𝟏𝑰𝑰𝑰𝑰𝒙𝒙𝟏𝟏𝑰𝑰𝑰𝑰 ;       �̈̅�𝒙𝟐𝟐𝑰𝑰𝑰𝑰 = −𝒂𝒂𝟐𝟐𝑰𝑰𝑰𝑰𝒙𝒙𝟐𝟐𝑰𝑰𝑰𝑰 ;     …    �̈�𝒙𝒏𝒏𝑰𝑰𝑰𝑰 = −𝒂𝒂𝒏𝒏𝑰𝑰𝑰𝑰𝒙𝒙𝒏𝒏𝑰𝑰𝑰𝑰. 
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5

where 
ξ (n are integers) are the positive roots of the transcendental 

equation:

Fig. 1: Graphical definition of the positive roots of equation 5

For λ found in this way, in accordance with the superposition 
principle, we determine the general solution of the equation:

Made up of a countable number of solutions.

Assuming here that c λω (ω>0).

We will get

           (6)

We determine the coefficients of this series from the initial 
condition

Or

Substituting (4a) into (4) gives:

(4b)

The left part of this equality does not depend on t, the  
right - on x, therefore, their total value does not depend on ei-
ther x or t, and therefore reduces to a constant, which we take 
in the form -c2 λ2 (for λ>0). Then equation 4b decomposes into 
two ordinary differential equations:

                (a)
 

            (b)

Their solution (general integrals) have the form: 
for a)

To solve equation b), the boundary conditions on the left 
and right ends should be taken into account:

Solution of the equation:

Is:

Then, for the condition on the free boundary x=0, we have:

Or

We consider the boundary condition for x2=1 , assuming 
that C=0

or from where

           (5)

The graph shown in Fig. 1 provides information 
about the solutions of this equation. The positive roots  
λ1, λ2... λn give us eigenvalues with corresponding eigenfunc-
tions sinλx, sinλ2x,... sinλnx.

In other words, a number of values is obtained for λ
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3. RESULTS AND DISCUSSION 
 
Thus, it is established that for longitudinal oscillations, the system splits into a number of separate 
invariant subspaces, which are independent solutions with eigenvalues ai(I,II), describing eigen-
oscillations in each of them. 
 
At the same time, if each of the forms U(I,II) (x) that determine the potential energies of the rods is 
positive definite, then all ak(I,II) are positive. Then the considered point x (vector �̅�𝒙), in each of the 
corresponding invariant subspaces, performs n independent oscillations along n mutually 
perpendicular directions in the corresponding bases selected in them: e1(I,II); e2(I,II); …, en (I,II). These 
oscillations are called the main or eigen-oscillations, and the numbers 𝝎𝝎𝒌𝒌(I,II) are the eigen-
frequencies of vibrations for each individual element. 
 
The eigen-frequencies can be found based on the equation of motion of a rod conjugated to another 
rod: 
 

𝝏𝝏𝟐𝟐𝒖𝒖
𝝏𝝏𝒕𝒕𝟐𝟐 − 𝒄𝒄𝟐𝟐 𝝏𝝏

𝟐𝟐𝒖𝒖
𝝏𝝏𝒙𝒙𝟐𝟐 = −𝒌𝒌𝒖𝒖            𝑜𝑜𝑜𝑜 

(4) 

𝒄𝒄𝟐𝟐 𝝏𝝏
𝟐𝟐𝒖𝒖
𝝏𝝏𝒙𝒙𝟐𝟐 − 𝒌𝒌𝒖𝒖 = 𝝏𝝏𝟐𝟐𝒖𝒖

𝝏𝝏𝒕𝒕𝟐𝟐 . 
 

 

 
We are looking for a solution in the form of a product of two functions, one of which depends only on 
x, and the other depends only on t: 
 

𝑼𝑼(𝒙𝒙, 𝒕𝒕) = 𝑿𝑿(𝒙𝒙)𝑻𝑻(𝒕𝒕). (4a) 
 
Substituting (4a) into (4) gives: 
 

𝒄𝒄𝟐𝟐𝑻𝑻(𝒕𝒕) ∙ 𝒙𝒙𝑰𝑰𝑰𝑰(𝒙𝒙) − 𝒌𝒌 ∙ 𝑿𝑿(𝒙𝒙)𝑻𝑻(𝒕𝒕) = 𝑿𝑿(𝒙𝒙) ∙ 𝑻𝑻𝑰𝑰𝑰𝑰(𝒕𝒕)             𝑜𝑜𝑜𝑜  
𝒄𝒄𝟐𝟐𝑿𝑿𝑰𝑰𝑰𝑰(𝒙𝒙) − 𝒌𝒌/𝑿𝑿(𝒙𝒙)

𝑿𝑿(𝒙𝒙) = 𝑻𝑻𝑰𝑰𝑰𝑰(𝒕𝒕)
𝑻𝑻(𝒕𝒕) . 

(4b) 

  
The left part of this equality does not depend on t, the right - on x, therefore, their total value does 
not depend on either x or t, and therefore reduces to a constant, which we take in the form −𝒄𝒄𝟐𝟐𝝀𝝀𝟐𝟐 
(for λ>0). Then equation 4b decomposes into two ordinary differential equations: 
 

𝑻𝑻,,(𝒕𝒕) + 𝒄𝒄𝟐𝟐𝝀𝝀𝟐𝟐𝑻𝑻(𝒕𝒕) = 𝟎𝟎; (a) 
𝒄𝒄𝟐𝟐𝒙𝒙,,(𝒙𝒙)− 𝒌𝒌𝑿𝑿(𝒙𝒙) + 𝒄𝒄𝟐𝟐𝝀𝝀𝟐𝟐𝑿𝑿(𝒙𝒙). (b) 

   
Their solution (general integrals) have the form:  
for a) 

𝑻𝑻(𝒕𝒕) = 𝑨𝑨𝒄𝒄𝑨𝑨𝑨𝑨(𝒄𝒄𝝀𝝀𝒕𝒕) + 𝑩𝑩𝑨𝑨𝑩𝑩𝑩𝑩(𝒄𝒄𝝀𝝀𝒕𝒕). 
 

To solve equation b), the boundary conditions on the left and right ends should be taken into 
account: 
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not depend on either x or t, and therefore reduces to a constant, which we take in the form −𝒄𝒄𝟐𝟐𝝀𝝀𝟐𝟐 
(for λ>0). Then equation 4b decomposes into two ordinary differential equations: 
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𝒄𝒄𝟐𝟐𝒙𝒙,,(𝒙𝒙)− 𝒌𝒌𝑿𝑿(𝒙𝒙) + 𝒄𝒄𝟐𝟐𝝀𝝀𝟐𝟐𝑿𝑿(𝒙𝒙). (b) 

   
Their solution (general integrals) have the form:  
for a) 

𝑻𝑻(𝒕𝒕) = 𝑨𝑨𝒄𝒄𝑨𝑨𝑨𝑨(𝒄𝒄𝝀𝝀𝒕𝒕) + 𝑩𝑩𝑨𝑨𝑩𝑩𝑩𝑩(𝒄𝒄𝝀𝝀𝒕𝒕). 
 

To solve equation b), the boundary conditions on the left and right ends should be taken into 
account: 
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3. RESULTS AND DISCUSSION 
 
Thus, it is established that for longitudinal oscillations, the system splits into a number of separate 
invariant subspaces, which are independent solutions with eigenvalues ai(I,II), describing eigen-
oscillations in each of them. 
 
At the same time, if each of the forms U(I,II) (x) that determine the potential energies of the rods is 
positive definite, then all ak(I,II) are positive. Then the considered point x (vector �̅�𝒙), in each of the 
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perpendicular directions in the corresponding bases selected in them: e1(I,II); e2(I,II); …, en (I,II). These 
oscillations are called the main or eigen-oscillations, and the numbers 𝝎𝝎𝒌𝒌(I,II) are the eigen-
frequencies of vibrations for each individual element. 
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We are looking for a solution in the form of a product of two functions, one of which depends only on 
x, and the other depends only on t: 
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The left part of this equality does not depend on t, the right - on x, therefore, their total value does 
not depend on either x or t, and therefore reduces to a constant, which we take in the form −𝒄𝒄𝟐𝟐𝝀𝝀𝟐𝟐 
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𝒄𝒄𝟐𝟐𝒙𝒙,,(𝒙𝒙)− 𝒌𝒌𝑿𝑿(𝒙𝒙) + 𝒄𝒄𝟐𝟐𝝀𝝀𝟐𝟐𝑿𝑿(𝒙𝒙). (b) 

   
Their solution (general integrals) have the form:  
for a) 
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𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏 = 𝟎𝟎;     𝑎𝑎𝑎𝑎𝑎𝑎   − 𝒌𝒌𝑰𝑰 𝝏𝝏𝝏𝝏

(𝝏𝝏𝟐𝟐𝒕𝒕)
𝝏𝝏𝝏𝝏 = 𝑲𝑲𝒏𝒏

𝑰𝑰𝑰𝑰(𝝏𝝏𝟐𝟐, 𝒕𝒕); 
𝒄𝒄𝟐𝟐𝝏𝝏,,(𝝏𝝏) + 𝒄𝒄𝟐𝟐𝝀𝝀𝟐𝟐𝑿𝑿(𝝏𝝏) = −𝑲𝑲𝑰𝑰𝝏𝝏𝑰𝑰(𝝏𝝏) = 𝟎𝟎. 

Solution of the equation: 
 

𝒄𝒄𝟐𝟐𝝏𝝏,,(𝝏𝝏) + 𝒄𝒄𝟐𝟐𝝀𝝀𝟐𝟐𝑿𝑿(𝝏𝝏) = 𝟎𝟎; 
𝝏𝝏,,(𝝏𝝏) + 𝝀𝝀𝟐𝟐𝑿𝑿(𝝏𝝏) = 𝟎𝟎. 

Is: 
 

𝑿𝑿(𝝏𝝏) = 𝑪𝑪𝒄𝒄𝑪𝑪𝑪𝑪𝝏𝝏 + 𝑫𝑫𝑪𝑪𝑫𝑫𝒏𝒏𝝀𝝀𝝏𝝏. 
 
Then, for the condition on the free boundary x=0, we have: 
 

𝑿𝑿(𝝏𝝏) = 𝑪𝑪𝒄𝒄𝑪𝑪𝑪𝑪𝝀𝝀𝝏𝝏 + 𝑫𝑫𝑪𝑪𝑫𝑫𝒏𝒏𝝀𝝀𝝏𝝏 
 
Or 

𝑪𝑪𝒄𝒄𝑪𝑪𝑪𝑪𝝀𝝀𝝏𝝏 + 𝑫𝑫𝑪𝑪𝑫𝑫𝒏𝒏𝝀𝝀𝝏𝝏 = 𝟎𝟎;     𝑪𝑪𝒄𝒄𝑪𝑪𝑪𝑪𝝀𝝀𝟎𝟎 = 𝟎𝟎;      𝑪𝑪 = 𝟎𝟎. 
 
We consider the boundary condition for 𝝏𝝏𝟐𝟐 = 𝟏𝟏, assuming that 𝑪𝑪 = 𝟎𝟎. 
 

𝒌𝒌𝟐𝟐𝑪𝑪𝑫𝑫𝒏𝒏𝝀𝝀𝝏𝝏 = −𝒌𝒌𝟏𝟏𝒄𝒄𝑪𝑪𝑪𝑪𝝀𝝀𝝏𝝏 
 
or from where 
 

𝒌𝒌𝟐𝟐𝑪𝑪𝑫𝑫𝒏𝒏𝝀𝝀𝒔𝒔 = −𝒌𝒌𝟏𝟏𝒄𝒄𝑪𝑪𝑪𝑪𝝀𝝀𝒔𝒔; 
 

𝒕𝒕𝒕𝒕𝝀𝝀𝒔𝒔 = −𝑲𝑲𝟏𝟏
𝑲𝑲𝟐𝟐

𝝀𝝀 = −𝑲𝑲𝟏𝟏(𝝀𝝀𝒔𝒔)
𝑲𝑲𝟐𝟐𝒔𝒔

. (5) 

 
The graph shown in Figure 1 provides information about the solutions of this equation. The positive 
roots 𝝀𝝀𝟏𝟏, 𝝀𝝀𝟐𝟐, … , 𝝀𝝀𝒏𝒏 give us eigenvalues with corresponding eigenfunctions 
𝑪𝑪𝑫𝑫𝒏𝒏𝝀𝝀𝝏𝝏, 𝑪𝑪𝑫𝑫𝒏𝒏𝝀𝝀𝟐𝟐𝝏𝝏, … , 𝑪𝑪𝑫𝑫𝒏𝒏𝝀𝝀𝒏𝒏𝝏𝝏. 
 
In other words, a number of values is obtained for λ 
 

𝛌𝛌𝒏𝒏 = −𝝃𝝃𝒔𝒔 , 
 
where ξ (n are integers) are the positive roots of the transcendental equation: 
 

𝒕𝒕𝒕𝒕𝛏𝛏 = − 𝒌𝒌𝟏𝟏
𝒌𝒌𝟐𝟐𝒔𝒔 𝛏𝛏; 

𝒚𝒚 = −𝒌𝒌𝟏𝟏
𝒌𝒌𝟐𝟐𝝀𝝀. 

 
 
Fig. 1: Graphical definition of the positive roots of equation 5 
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For λ found in this way, in accordance with the superposition principle, we determine the general 
solution of the equation: 

𝑼𝑼(𝒙𝒙, 𝒕𝒕) = ∑[𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨(𝑨𝑨𝝀𝝀𝒕𝒕) + 𝑩𝑩𝑨𝑨𝑩𝑩𝑩𝑩(𝑨𝑨𝝀𝝀𝒕𝒕)]
∞

𝑩𝑩=𝟏𝟏
𝑨𝑨𝑩𝑩𝑩𝑩𝝀𝝀𝑩𝑩. 

 
Made up of a countable number of solutions. 
 
Assuming here that  𝑨𝑨𝝀𝝀 = 𝝎𝝎 (ω>0). 
 
We will get 
 

𝑼𝑼(𝒙𝒙, 𝒕𝒕) = ∑𝑪𝑪𝑩𝑩
∞

𝑩𝑩=𝟏𝟏
𝑨𝑨𝑩𝑩𝑩𝑩(𝝎𝝎𝑩𝑩𝒕𝒕 + 𝜶𝜶)𝑨𝑨𝑩𝑩𝑩𝑩𝝀𝝀𝑩𝑩𝒙𝒙. 

(6) 

 
We determine the coefficients of this series from the initial condition 
 

𝑼𝑼 = 𝒇𝒇(𝒙𝒙),         (𝟎𝟎 ≤ 𝒙𝒙 ≤ 𝒍𝒍) 
 
Or 

𝑼𝑼 = 𝒇𝒇(𝒙𝒙) = ∑𝑨𝑨𝑩𝑩̅̅ ̅
∞

𝑩𝑩=𝟏𝟏
𝑨𝑨𝑩𝑩𝑩𝑩𝝀𝝀𝑩𝑩𝒙𝒙 = ∑𝑨𝑨𝑩𝑩̅̅ ̅

∞

𝑩𝑩=𝟏𝟏
𝑨𝑨𝑩𝑩𝑩𝑩 𝝃𝝃𝑩𝑩𝝃𝝃𝒍𝒍 . 

 

4. CONCLUSION 
 
The last equation can be considered as a generalized Fourier series in the interval (0, 1). Using the 
orthogonality of the found eigenfunctions 
 

𝑨𝑨𝑩𝑩𝑩𝑩 𝝃𝝃𝑩𝑩𝝃𝝃𝒍𝒍 . 
 
We determine the coefficients according to the known methods of normalization 
 

𝑪𝑪𝑩𝑩 =
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For a known task f(x), these coefficients are uniquely found. The representation of the series in the 
form of 16 is an example of an anharmonic Fourier series (by the standing wave method). The 
components of this series do not have a common period, as in the harmonic Fourier series under 
normal conditions. The eigenvalues λn here have a bit more complex nature of their formation 
compared to those considerations when the boundary does not perform work, which is usually the 
case under other boundary conditions, starting from the initial moment of time (t=0). 
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For λ found in this way, in accordance with the superposition principle, we determine the general 
solution of the equation: 
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We determine the coefficients of this series from the initial condition 
 

𝑼𝑼 = 𝒇𝒇(𝒙𝒙),         (𝟎𝟎 ≤ 𝒙𝒙 ≤ 𝒍𝒍) 
 
Or 
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compared to those considerations when the boundary does not perform work, which is usually the 
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On the other side, based on the graphical construction for 
finding solutions, in accordance with Fig. 1, we establish that 
the roots of λn lie in the range:

Then for the eigen-frequencies we find the intervals of their 
changes taking into account

We get the following:

where 
n is integers, 
c is propagation velocity.

The results obtained in this paper can be extended to a rod 
system (which, as it was noted, serves as a research model), 
consisting of a finite number of rods, and interconnected by 
various coupling conditions.

In this case, the energy distribution law for such a system is 
represented in a similar form for the time , where    
is the time required to establish an equilibrium state for each 
of the system rods, i.e.

Since during the wave process, the kinetic (T) and  
potential (U) energy in the considered volume of the medium 
reach their experimental values simultaneously, therefore, 
when averaging them over time for each of the rods, there is

assuming that in the volume of each of the rods under con-
sideration, the average value of the total energy coincides 
with the maximum value of the potential energy.

On this basis, the last relation is represented as:

where 
n is the number of elements included in the core system.

4. CONCLUSION

The last equation can be considered as a generalized Fou-
rier series in the interval (0, 1). Using the orthogonality of the 
found eigenfunctions

We determine the coefficients according to the known me-
thods of normalization

For a known task f(x), these coefficients are uniquely found. 
The representation of the series in the form of 16 is an exam-
ple of an anharmonic Fourier series (by the standing wave 
method). The components of this series do not have a com-
mon period, as in the harmonic Fourier series under normal 
conditions. The eigenvalues λn here have a bit more complex 
nature of their formation compared to those considerations 
when the boundary does not perform work, which is usually 
the case under other boundary conditions, starting from the 
initial moment of time (t=0).

Considering the expression 6, we see that the total oscilla-
tion of the rod u(x,t) is composed of a series of individual 
oscillations un(x,t); where the points participating in such an 
elementary oscillation, determining the coordinates of the se-
ctions, oscillate with the same frequency. The amplitude of the 
oscillation of each point depends on its position. It is equal to:

The entire length of the rod is divided into not necessarily 
equal sections, and the point of the same section is always in 
the same phase, whereas the points of neighboring sections 
are in directly opposite phases. The points separating one  
section from another are at rest, these are the so-called ‘nodes’. 
The midpoints of each of the sections (‘antinodes’) oscillate 
with the greatest amplitude, and, as can be seen from Fig. 1, 
the modes with a higher frequency of eigen-oscillations corre-
sponding to the eigen-frequencies λi, ‘fit" more closely to their 
corresponding vertical asymptotes.

Naturally, everything said about the rod I is exactly transfe-
rred to the rod II associated with it. When each of the rods vi-
brates at higher frequencies, there will be no multiplicity with 
respect to the main forms of vibrations, as it is easy to see in 
Fig. 1, for the boundary condition under consideration.

Since the steady-state energy mode of each of the rods is 
described by standing waves, as follows from the analysis of 
the solution, the average value of the energy flow for the peri-
od equals to zero, which allows us to conclude that there is no 
redistribution between neighboring antinodes in relation to 
kinetic and potential energy in a standing wave.

Taking further into account that at a steady energy state, a 
wave number is used as a characteristic of the description of 
the plane wave harmonicity, then with the known notation, on 
one side, we can write:
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For λ found in this way, in accordance with the superposition principle, we determine the general 
solution of the equation: 
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∞

𝑩𝑩=𝟏𝟏
𝑨𝑨𝑩𝑩𝑩𝑩𝝀𝝀𝑩𝑩. 

 
Made up of a countable number of solutions. 
 
Assuming here that  𝑨𝑨𝝀𝝀 = 𝝎𝝎 (ω>0). 
 
We will get 
 

𝑼𝑼(𝒙𝒙, 𝒕𝒕) = ∑𝑪𝑪𝑩𝑩
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𝑨𝑨𝑩𝑩𝑩𝑩(𝝎𝝎𝑩𝑩𝒕𝒕 + 𝜶𝜶)𝑨𝑨𝑩𝑩𝑩𝑩𝝀𝝀𝑩𝑩𝒙𝒙. 

(6) 

 
We determine the coefficients of this series from the initial condition 
 

𝑼𝑼 = 𝒇𝒇(𝒙𝒙),         (𝟎𝟎 ≤ 𝒙𝒙 ≤ 𝒍𝒍) 
 
Or 
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For a known task f(x), these coefficients are uniquely found. The representation of the series in the 
form of 16 is an example of an anharmonic Fourier series (by the standing wave method). The 
components of this series do not have a common period, as in the harmonic Fourier series under 
normal conditions. The eigenvalues λn here have a bit more complex nature of their formation 
compared to those considerations when the boundary does not perform work, which is usually the 
case under other boundary conditions, starting from the initial moment of time (t=0). 
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Considering the expression 6, we see that the total oscillation of the rod u(x,t) is composed of a series 
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(𝟐𝟐𝟐𝟐 − 𝟏𝟏)𝝅𝝅𝟐𝟐 𝑪𝑪
𝒍𝒍 =

(𝟐𝟐𝟐𝟐 − 𝟏𝟏)𝝅𝝅𝟐𝟐
𝒍𝒍 (𝑬𝑬𝝆𝝆)

𝟏𝟏
𝟐𝟐

< 𝛚𝛚𝟐𝟐 <
(𝟐𝟐𝟐𝟐 + 𝟏𝟏)𝝅𝝅𝟐𝟐

𝒍𝒍 (𝑬𝑬𝝆𝝆)
𝟏𝟏
𝟐𝟐

, 
 
where n is integers, c is propagation velocity. 
 
The results obtained in this paper can be extended to a rod system (which, as it was noted, serves as 
a research model), consisting of a finite number of rods, and interconnected by various coupling 
conditions. 
 
In this case, the energy distribution law for such a system is represented in a similar form for the time 
𝒕𝒕 ≫ 𝒕𝒕𝒎𝒎𝒎𝒎𝒎𝒎

∗ , where 𝒕𝒕𝒊𝒊∗ is the time required to establish an equilibrium state for each of the system rods, 
i.e. 

𝑨𝑨 = ∑𝑬𝑬𝒊𝒊
𝟐𝟐

𝒊𝒊
. 

 
Since during the wave process, the kinetic (T) and potential (U) energy in the considered volume of 
the medium reach their experimental values simultaneously, therefore, when averaging them over 
time for each of the rods, there is 
 

〈𝑬𝑬𝒊𝒊〉 = 〈𝑻𝑻𝒊𝒊 + 𝑼𝑼𝒊𝒊〉 = 𝑼𝑼𝒊𝒊, 
 
assuming that in the volume of each of the rods under consideration, the average value of the total 
energy coincides with the maximum value of the potential energy. 
 
On this basis, the last relation is represented as: 

𝑨𝑨 = ∑𝑼𝑼𝒊𝒊

𝟐𝟐

𝒊𝒊=𝟏𝟏
(𝒎𝒎);       (𝒕𝒕 > 𝒕𝒕𝒎𝒎𝒎𝒎𝒎𝒎𝒊𝒊

∗ ), 

 
where n is the number of elements included in the core system. 
 
Studying the influence of internal losses on the energy distribution of sound vibration has two goals. 
Firstly, it is necessary to find out how losses affect the speed of establishing a stationary process in 
the system, and secondly, whether the system has a general loss coefficient in a stationary mode. 
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Studying the influence of internal losses on the energy dis-
tribution of sound vibration has two goals. Firstly, it is nece-
ssary to find out how losses affect the speed of establishing 
a stationary process in the system, and secondly, whether the 
system has a general loss coefficient in a stationary mode.
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