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metric of the manifold to simplify our task. Here, we introduce  
“Killing vector” or conserved quantity which will be used to 
find the solution of geodesic equations.

Then a new Stochastic Matched Field Processing (SMFP) is 
defined using the directed geodesic distance in order to locate 
the true source position in a more practical manner.

In addition, not only close-form of SMFP is derived but also 
the SMFP is verified by simulations in which ocean variability 
is taken into account. The performance of the proposed SMFP 
is verified in simulations, the true source could be detected if 
20 modeled field replicas and 10 replicas of SONAR array data 
were used. The performance of the proposed STMP outperfor-
med to that of standard algorithm at the expense of a little 
more of computation.

The paper is organized as follows. Part 2 introduces the me-
asurement of directed Riemannian distance. The stochastic 
Riemannian matched field processing is described in Part 3. 
Some simulations are given in Part 4. Finally, we conclude the 
paper in Part 5.

2. DIRECTED RIEMANNIAN DISTANCE 

2.1 CSDM MATRIX MANIFOLD
An CSDM manifold (Μ,gm) is a manifold M which consists of 

CSDM matrices and is equipped with inner product (Riemann-
ian metric) gm on the tangent space TM(m). Given the inner 
product gm on TM(m), each point m that varies smoothly from 
point to point in the sense that if X and Y are differentiable ve-
ctor fields on M, then is a smooth function.

1. INTRODUCTION

The pioneers of Matched Field Processing (MFP) are A. Tol-
stoy and A. B. Baggeroer as in [1-4]. Whereas the book of A. 
Tolstoy [1] discussed many issues of the MFP such as popu-
lar processors, pitfalls, and the applications, the paper of  
A. B. Baggeroer [3] is in a form of overview document. The most 
valuable contribution of those authors is pointed out that MTP 
is an effective way of underwater source localization [1-4]. The 
main applications of MFP are floating ship detection, submari-
ne detection in military section and fish finding in civilization. 
Besides, the trend of determining environmental parameters 
such as sound speed profile, bottom topography and array tilt 
is also developed. 

Since the MFP is a model based approach, it required not 
only a suitable simulated model  of underwater sound pro-
pagation but also a collected data from a sensor array which 
could be vertical, horizontal or even towed array. This difficulty 
overcame because sensor data were provided by SACLANTC 
center by the introduction in [5]. In order to increase its reli-
ability and resolution some methods such as empirical mode 
decomposition, adaptive MFP, compressive MFP and especi-
ally stochastic MFP using Riemannian geometry have been 
introduced recently [6-9].

The fact that stochastic Matched Field Processing (SMTP) are 
derived on the basis of Riemannian distance (RDs) which were 
calculated using isometric mappings (IMs) [9-10].

If an IM does not exist, we must solve geodesic equations 
directly to find the geodesic distance. Normally, this task leads 
to solve a system of second-order differential equations. Ho-
wever, it is usually very difficult to solve the system of differen-
tial equations analytically [11].

Fortunately, if a manifold is symmetrical (for instance, in R3, 
there are two kinds of underwater sound propagation, na-
mely, Spherical or Cylindrical spreading in which the former 
having two symmetrical coordinates (θ, ø) and the letter ha-
ving one symmetrical coordinate (ø) ) we can exploit the sym-
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2.1 CSDM MATRIX MANIFOLD 
 
An CSDM manifold (Μ, mg ) is a manifold M  which 
consists of CSDM matrices and is equipped with 
inner product (Riemannian metric) mg  on the 

tangent space ( )MT m . Given the inner product 

mg  on ( )MT m , each point m that varies smoothly 
from point to point in the sense that if X and Y are 
differentiable vector fields on M, then 

( , )m m mm g X Y is a smooth function. 

 
2.2 THE SYMMETRIC OF HERMITIAN 
POSITIVE DEFINITE MATRICES 
 
The fact that the data collected usually in form of 
CSDMs which are not random but Hermit and 
positive definite, form a manifold that each CSDM is 
a point on it.  
Let P be the set of Hermitian nxn complex matrices. 
Let 1P denote the subset of P of positive definite 
matrices and give it the subspace topology. This set 
carries the structure of a vector space M over C 
under usual addition or multiplication.  
As is known, every finite dimensional vector space 
M over C is locally compact when equipped with the 
topology induced by any norm. 
Therefore,  1,det 0M A P A=   , by continuity 

of the determinant, it follows that M is open in the 
locally compact. If M is simply connected, compact 
type (positive definite or nonnegative sectional 
curvature), it can belong to a simply connected 
Riemannian symmetric space. The other simply 
connected Riemannian symmetric space can be 
Euclidean or non-compact types. 
Now,  1,det 0M A P A=   , M is said to be 

simply connected, compact and symmetric. 
 
2.3 GEODESIC EQUATIONS 
 
According to [11], geodesic equations are 
equivalent to the system of differential equations as 
follows 

1 ' 2 1 ' ' 1 ' 2 ''
11 12 22
2 ' 2 2 ' ' 2 ' 2 ''
11 12 22

( ) 2 ( ) 0

( ) 2 ( ) 0

u u v u u
u u v u u

 +  + + =

 +  + + =

 

     (1) 
where  k

ij are Christofell symbols and u, v are 

local coordinates.  

 
2.4 SYMMETRIC AND KILLING 
VECTOR 
 
Solving a system of second-order ordinary 
differential equations can be easy for simple 
metrics, but quickly become very difficult for more 
interesting cases. Here we exploit the symmetric of 
a manifold to simplify our tasks. 
The simplest symmetries can be found by 
observing if the metric is independent of any of its 
coordinates. We can define a vector field for each 
symmetry such that, at every point, a vector points 
along the direction in which the metric does not 
change due to that symmetric. This is called a 
“Killing vector”, after the German mathematician 
Wilherm Killing. 
For example, if we have a metric independent of x1, 
the killing vector of the manifold in R3 associated 
with that symmetry is  (1,0,0) =  
 (2) 
The Riemannian distance between two point 
( , )a bm m  is given by 

i j
ijL p x x=

   (3) 
where ijp is the Riemannian metric of the surface. 

So, the Euler-Lagrange equation become   

1( ) 0
( / )

d L
d dx d 


=


  (4) 

This means that the quantity inside the derivative is 
constant along the geodesic. 
Now, 
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1
( / )
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L dxp
dx d L d

p u C





 


 



= −



= − = − =ξ u
  

    (5) 
where  is a killing vector and u  is a velocity. 

Thus .ξ u is a conserved quantity. We can exploit 
this to solve geodesic equations. 

 
2.5 GEODESIC EQUATION OF 
SPHERICAL SPREADING OF 
UNDERWATER SOUND WAVE 
 
As is known, there are two kinds of underwater 
sound propagation, namely, Spherical and 
Cylindrical spreading. In this paper, the former is 
used. Therefore, let us introduce the methodology 
of computing the geodesic equation by calculating  
the geodesic on the surface of the 3D sphere. 
The radius of a 3D sphere is a constant R=Cte, 
therefore the Spherical coordinates are 

1 2( , ) ( , )x x  = , the Christofell symbols are 
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This means that the quantity inside the derivative is con-
stant along the geodesic.
Now,

             (5)

where
is a killing vector and 

   is a velocity. 

Thus is a conserved quantity. We can exploit this to solve 
geodesic equations.

2.5 GEODESIC EQUATION OF SPHERICAL SPREADING OF 
UNDERWATER SOUND WAVE

As is known, there are two kinds of underwater sound pro-
pagation, namely, Spherical and Cylindrical spreading. In this 
paper, the former is used. Therefore, let us introduce the me-
thodology of computing the geodesic equation by calculating  
the geodesic on the surface of the 3D sphere.

The radius of a 3D sphere is a constant R=Cte, therefore the 
Spherical coordinates are , the Christofell sym-
bols are

           (6)

The geodesic equations are obtained from (6)

              (7)

This couple of second-order ordinary differential equation is 
called geodesic equations.

The Riemannian distance between two points on the sur-
face of 3D sphere can be written as

               (8)

The first derivative of (8) give us the velocity, u, as follows

             (9)

If we divide both side of (8) by ds we obtain

          (10)

Since the metric is independent of 0, we can choose the Ki-
lling vector as 

Therefore, the conserved quantity is

          (11)

From (10),(11), we deduce

         (12)

If we set R=1,
Now, the parameterization of the geodesic on the  surface of 

3D sphere can be written as

           (13)

2.2 THE SYMMETRIC OF HERMITIAN POSITIVE DEFINITE 
MATRICES

The fact that the data collected usually in form of CSDMs 
which are not random but Hermit and positive definite, form a 
manifold that each CSDM is a point on it. 
Let P be the set of Hermitian nxn complex matrices. Let   deno-
te the subset of P of positive definite matrices and give it the 
subspace topology. This set carries the structure of a vector 
space M over C under usual addition or multiplication. 
As is known, every finite dimensional vector space M over C 
is locally compact when equipped with the topology induced 
by any norm.
Therefore, , by continuity of the determi-
nant, it follows that M is open in the locally compact. If M is 
simply connected, compact type (positive definite or nonne-
gative sectional curvature), it can belong to a simply connec-
ted Riemannian symmetric space. The other simply connected 
Riemannian symmetric space can be Euclidean or non-com-
pact types.
Now, , M is said to be simply connected, 
compact and symmetric.

2.3 GEODESIC EQUATIONS
According to [11], geodesic equations are equivalent to the 

system of differential equations as follows

           (1)

where 
 are Christofell symbols and u, 

v     are local coordinates.

2.4 SYMMETRIC AND KILLING VECTOR
Solving a system of second-order ordinary differential equa-

tions can be easy for simple metrics, but quickly become very 
difficult for more interesting cases. Here we exploit the sym-
metric of a manifold to simplify our tasks.

The simplest symmetries can be found by observing if the 
metric is independent of any of its coordinates. We can define 
a vector field for each symmetry such that, at every point, a 
vector points along the direction in which the metric does not 
change due to that symmetric. This is called a “Killing vector”, 
after the German mathematician Wilherm Killing.

For example, if we have a metric independent of x1, the ki-
lling vector of the manifold in R3 associated with that symme-
try is

               (2)

The Riemannian distance between two point                is given 
by

             (3)

where 
is the Riemannian metric of the surface.

So, the Euler-Lagrange equation become 

              (4)
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The geodesic equations are obtained from (6) 
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This couple of second-order ordinary differential 
equation is called geodesic equations. 
The Riemannian distance between two points on 
the surface of 3D sphere can be written as 
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The first derivative of (8) give us the velocity, u, as 
follows 
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If we set R=1, ' ' 2, 1teb C b = = = − . 
Now, the parameterization of the geodesic on the  
surface of 3D sphere can be written as 
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It is exactly the equation of Great circle. Generally, 
the Great circle equation in Cartesian   coordinates 
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where R is radius of the sphere. 
 
3. STOCHASTIC MATCHED FIELD 
PROCESSING  

An acoustic pressure field on a vertical array of N 
sensors with locations ( , ), ,= =a a ap r z a 1 N and 

from the true source coordinate ( , )=s s sp r z is 
given by 

( , ) . ( , ) ( )= +
s s a s a apF p p S G p p W p

 (15)
 

where S is a spectral component of the source, G is 
Green function which is calculated by Normal mode 
model and  W represents uncorrelated additive 
ambient noise. 
 The cross-spectral density matrix is written as 

1=
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Normalization of CSDM using Frobenius norm, we 
have 
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The Frobenius norm define that 
2 ( )= = H

ijF ij
trA a AA  where ija is element 

of matrix A and H is the transpose conjugate [12]. 
The corresponding normalization of CSDM of 
modeled field replica from estimated source 
coordinate ( , )=p r z denoted by 

p
R . 

The matched field processor based on Riemannian 
Geometry is received by obtaining the space 
coordinates of modeled field replicas which are 
scanning over all modeled field replicas position 

( , )
  

=p r z with a subject constraint of minimization 
of specific Riemannian distance. 
According to (14) a new stochastic matched field 
processors which are based on directed 
Riemannian distance is defined as follows 

                                                
 

First step: 
Without loss the generality, the Riemannian 
matched field processor based on Riemannian 
geometry is received by obtaining the space 
coordinates of data replicas which are scanning 

over all modeled field replicas position ( , )r z
  

=p  
with a subject constraint of minimization of 
Riemannian distance as follows 
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Green function which is calculated by Normal mode 
model and  W represents uncorrelated additive 
ambient noise. 
 The cross-spectral density matrix is written as 

1=

   =    s s s

M H

m m
m

p p pR F F    (16) 

Normalization of CSDM using Frobenius norm, we 
have 
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The Frobenius norm define that 
2 ( )= = H

ijF ij
trA a AA  where ija is element 

of matrix A and H is the transpose conjugate [12]. 
The corresponding normalization of CSDM of 
modeled field replica from estimated source 
coordinate ( , )=p r z denoted by 

p
R . 

The matched field processor based on Riemannian 
Geometry is received by obtaining the space 
coordinates of modeled field replicas which are 
scanning over all modeled field replicas position 

( , )
  

=p r z with a subject constraint of minimization 
of specific Riemannian distance. 
According to (14) a new stochastic matched field 
processors which are based on directed 
Riemannian distance is defined as follows 

                                                
 

First step: 
Without loss the generality, the Riemannian 
matched field processor based on Riemannian 
geometry is received by obtaining the space 
coordinates of data replicas which are scanning 

over all modeled field replicas position ( , )r z
  

=p  
with a subject constraint of minimization of 
Riemannian distance as follows 

    

( , ) arg min ( ) ( ) 2 tr( )
s s

r z tr tr= + −p pp p
p

R R R R

       (18)
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This couple of second-order ordinary differential 
equation is called geodesic equations. 
The Riemannian distance between two points on 
the surface of 3D sphere can be written as 

 
2 2( ) ( )L R d d = +      (8) 

The first derivative of (8) give us the velocity, u, as 
follows 

2 2( , )L d dR R
s ds ds

 
= =


u      (9) 

If we divide both side of (8) by ds we obtain 

2 2 2 21 ( ) ( ) .d dR R
ds ds
 

= + = u u  (10) 

Since the metric is independent of  , we can 

choose the Killing vector as (0,1)=ξ .  
Therefore, the conserved quantity is 

  

2. tedR b C
ds


= = =ξ u    (11) 

From (10),(11), we deduce  
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  (12) 

If we set R=1, ' ' 2, 1teb C b = = = − . 
Now, the parameterization of the geodesic on the  
surface of 3D sphere can be written as 

1 2 3( , , ) ( 1, cos , sin )x x x R t t = = = =  
     (13) 
It is exactly the equation of Great circle. Generally, 
the Great circle equation in Cartesian   coordinates 
are 
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The Frobenius norm define that 
2 ( )= = H

ijF ij
trA a AA  where ija is element 

of matrix A and H is the transpose conjugate [12]. 
The corresponding normalization of CSDM of 
modeled field replica from estimated source 
coordinate ( , )=p r z denoted by 

p
R . 

The matched field processor based on Riemannian 
Geometry is received by obtaining the space 
coordinates of modeled field replicas which are 
scanning over all modeled field replicas position 

( , )
  

=p r z with a subject constraint of minimization 
of specific Riemannian distance. 
According to (14) a new stochastic matched field 
processors which are based on directed 
Riemannian distance is defined as follows 

                                                
 

First step: 
Without loss the generality, the Riemannian 
matched field processor based on Riemannian 
geometry is received by obtaining the space 
coordinates of data replicas which are scanning 

over all modeled field replicas position ( , )r z
  

=p  
with a subject constraint of minimization of 
Riemannian distance as follows 
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2. DIRECTED RIEMANNIAN 
DISTANCE  
 
2.1 CSDM MATRIX MANIFOLD 
 
An CSDM manifold (Μ, mg ) is a manifold M  which 
consists of CSDM matrices and is equipped with 
inner product (Riemannian metric) mg  on the 

tangent space ( )MT m . Given the inner product 

mg  on ( )MT m , each point m that varies smoothly 
from point to point in the sense that if X and Y are 
differentiable vector fields on M, then 

( , )m m mm g X Y is a smooth function. 

 
2.2 THE SYMMETRIC OF HERMITIAN 
POSITIVE DEFINITE MATRICES 
 
The fact that the data collected usually in form of 
CSDMs which are not random but Hermit and 
positive definite, form a manifold that each CSDM is 
a point on it.  
Let P be the set of Hermitian nxn complex matrices. 
Let 1P denote the subset of P of positive definite 
matrices and give it the subspace topology. This set 
carries the structure of a vector space M over C 
under usual addition or multiplication.  
As is known, every finite dimensional vector space 
M over C is locally compact when equipped with the 
topology induced by any norm. 
Therefore,  1,det 0M A P A=   , by continuity 

of the determinant, it follows that M is open in the 
locally compact. If M is simply connected, compact 
type (positive definite or nonnegative sectional 
curvature), it can belong to a simply connected 
Riemannian symmetric space. The other simply 
connected Riemannian symmetric space can be 
Euclidean or non-compact types. 
Now,  1,det 0M A P A=   , M is said to be 

simply connected, compact and symmetric. 
 
2.3 GEODESIC EQUATIONS 
 
According to [11], geodesic equations are 
equivalent to the system of differential equations as 
follows 

1 ' 2 1 ' ' 1 ' 2 ''
11 12 22
2 ' 2 2 ' ' 2 ' 2 ''
11 12 22

( ) 2 ( ) 0

( ) 2 ( ) 0

u u v u u
u u v u u

 +  + + =

 +  + + =

 

     (1) 
where  k

ij are Christofell symbols and u, v are 

local coordinates.  

 
2.4 SYMMETRIC AND KILLING 
VECTOR 
 
Solving a system of second-order ordinary 
differential equations can be easy for simple 
metrics, but quickly become very difficult for more 
interesting cases. Here we exploit the symmetric of 
a manifold to simplify our tasks. 
The simplest symmetries can be found by 
observing if the metric is independent of any of its 
coordinates. We can define a vector field for each 
symmetry such that, at every point, a vector points 
along the direction in which the metric does not 
change due to that symmetric. This is called a 
“Killing vector”, after the German mathematician 
Wilherm Killing. 
For example, if we have a metric independent of x1, 
the killing vector of the manifold in R3 associated 
with that symmetry is  (1,0,0) =  
 (2) 
The Riemannian distance between two point 
( , )a bm m  is given by 

i j
ijL p x x=

   (3) 
where ijp is the Riemannian metric of the surface. 

So, the Euler-Lagrange equation become   

1( ) 0
( / )

d L
d dx d 


=


  (4) 

This means that the quantity inside the derivative is 
constant along the geodesic. 
Now, 
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= −
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= − = − =ξ u
  

    (5) 
where  is a killing vector and u  is a velocity. 

Thus .ξ u is a conserved quantity. We can exploit 
this to solve geodesic equations. 

 
2.5 GEODESIC EQUATION OF 
SPHERICAL SPREADING OF 
UNDERWATER SOUND WAVE 
 
As is known, there are two kinds of underwater 
sound propagation, namely, Spherical and 
Cylindrical spreading. In this paper, the former is 
used. Therefore, let us introduce the methodology 
of computing the geodesic equation by calculating  
the geodesic on the surface of the 3D sphere. 
The radius of a 3D sphere is a constant R=Cte, 
therefore the Spherical coordinates are 

1 2( , ) ( , )x x  = , the Christofell symbols are 
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where  is a killing vector and u  is a velocity. 
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Second step: 
Now, on the basis of the outcome of directed Riemannian 

distance (Part 2), we found that the geodesic distance of Sphe-
rical spreading is preferred to Great circle distance. This mean 
that

         (19)

where
 radius of sphere
 parameterization of modeled data
 parameterization of measurement data

In another way, the diagram of the proposed SMFP
which is distinguished to other SMFP is shown in
Fig. 1 as follows

Fig. 1: Classification of Stochastic Matched Field Processes

4. SIMULATIONS

4.1 ACOUSTIC MODEL
The acoustic model in this paper using Normal mode model, 

in this case the acoustic pressure from [13] is given by

        (20)

where
r   is range, 
z   is depth, 
zs   is the depth of the source, 
ρ   is sea water density, 
Ψm   is amplitude of mth mode, and 
km  is mth  eigenvalue (wavenumber).

4.2 INPUT ACOUSTIC DATA
Passive array data SONAR from SACLANTC1993 North Elba 

experiment available in Internet was used for processing [14].
The vertical underwater acoustic array data was collected in 
shallow-water off the Italia west coast by the NATO SACLANT 
Center in La Spezia, Italy. The original SACLANT time series has 
been converted to a series of MATLAB .mat files each of which 

It is exactly the equation of Great circle. Generally, the Great 
circle equation in Cartesian coordinates are

          (14)

where 
R is radius of the sphere.

3. STOCHASTIC MATCHED FIELD  
PROCESSING 

An acoustic pressure field on a vertical array of N sensors with 
locations and from the true source coordi-
nate is given by

           (15)

where 
S    is a spectral component of the source, 
G   is Green function which is calculated by Normal mode mo-

del and  
W  represents uncorrelated additive ambient noise.

The cross-spectral density matrix is written as

          (16)

Normalization of CSDM using Frobenius norm, we have

          (17)

The Frobenius norm define that  

where 
Aij  is element of matrix 
A and H is the transpose conjugate [12]. The corresponding 

normalization of CSDM of modeled field replica from 
estimated source coordinate denoted by RP.

The matched field processor based on Riemannian Geome-
try is received by obtaining the space coordinates of modeled 
field replicas which are scanning over all modeled field repli-
cas position with a subject constraint of minimization 
of specific Riemannian distance.

According to (14) a new stochastic matched field processors 
which are based on directed Riemannian distance is defined 
as follows

First step:
Without loss the generality, the Riemannian matched field 

processor based on Riemannian geometry is received by 
obtaining the space coordinates of data replicas which are 
scanning over all modeled field replicas position  with a 
subject constraint of minimization of Riemannian distance as 
follows

         (18)
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This couple of second-order ordinary differential 
equation is called geodesic equations. 
The Riemannian distance between two points on 
the surface of 3D sphere can be written as 
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If we set R=1, ' ' 2, 1teb C b = = = − . 
Now, the parameterization of the geodesic on the  
surface of 3D sphere can be written as 
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The Frobenius norm define that 
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ijF ij
trA a AA  where ija is element 

of matrix A and H is the transpose conjugate [12]. 
The corresponding normalization of CSDM of 
modeled field replica from estimated source 
coordinate ( , )=p r z denoted by 

p
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matched field processor based on Riemannian 
geometry is received by obtaining the space 
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where R is radius of the sphere. 
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where r is range, z is depth, sz is the depth of the 
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the location of the underwater source. However, the propo-
sed stochastic MFP could work in an uncertain ocean environ-
ment where there are a lot of modeled field replicas as well as 
replicas of SONAR array data  whereas the conventional could 
not. It means that, the conventional MFP is very sensitive to an 
uncertain ocean environment, if there is a small changing of 
the replicas, one could not detect the true underwater source 
precisely.

The difference between the two methods is shown by com-
paring the Fig. 4 and Fig. 5, the performance of conventional 
MFP is worse than that of the proposed stochastic MFP since 
in conventional MFP beside the true source location there are 
some other lower peaks whereas in the proposed MFP almost 
the lower peaks are suppressed.

The proposed stochastic MFP can be applied to the arbit-
rary Riemannian manifold, not necessary in R3 as in other Ri-
emannian MFPs. It is because in those Riemannian MFPs  the 
isometric mapping existences are required. The complexity of 
the proposed stochastic MFP is a little bit more than that other 
Riemannian MFP since it required the second step in part 3. 
However, almost SONAR systems now a day are supported by 
powerful microprocessors, so the speed of computation of the 
second step is only in few seconds.

The fact that, MFP is a model based approach so it depends 
on the underwater sound mechanism. In this paper, the sphe-
rical spreading is assumed. In future, we may justify the other 
type of sound spreading, namely cylindrical spreading and if 
possible, we may implement the proposed STMP into a real 
SONAR system.

   (a)

   (b)
Fig. 4: Ambiguity surface of conventional matched field proce-
ssing (one modeled field and one data replica, SNR=-3dB, No of 
snapshot>20 samples): 4a) in 3 dimensions 4b) in 2 dimensions.

contains a matrix “dat” that is 48 sensors by 64K data points 
long. Each file represents about 1 minute of data. The vertical 
array consists of 48 hydrophones with spacing 2 m between 
elements at total aperture length 94 m (18.7 m to 112.7 m in 
depth). The source emitted PRN signal with center frequency 
of 170 Hz.

The Sound Speed Profile (SSP) from [14] is described in  
Fig. 2.

Fig. 2: SSP of SACLANTC 1993 North Elba

4.3 SIMULATION RESULTS OF GREAT CIRCLE ON THE SUR-
FACE OF A SPHERE

We simulate a 3D sphere and its geodesic. The great circle 
between two fix points (ma, mb) on the surface of the 3D sphe-
re (red line) is shown Fig. 3 as follow

Fig. 3: The great circle (red line) between two fix points  on the sur-
face of the 3D sphere.

4.4 SIMULATION RESULTS OF STOCHASTIC MATCHED 
FIELD PROCESSING

Fig. 4 is obtained from conventional MFP in which only 
one modeled field and one replica of SONAR array data were 
used. It should be noted that the data is from SACLANTC and 
SNR level is -3 dB and the number of snapshot is greater than  
20 samples  It can be seen that the true source can be detected 
at depth of 60 m and range of 6000 m. 

To illustrate the efficient of the methodology (part 3), we 
take some simulations. Here the ocean environment is consi-
dered as an uncertain environment. So twenty modeled field 
replicas are obtained from variable sound speeds that chan-
ged to depth according to SSP as depicted in Fig. 2. Each si-
mulation uses 10 replicas of SONAR array data. Fig. 5 are the 
results of the proposed stochastic MFP. 

The similarity between the conventional MTP and the pro-
posed stochastic MFP is both method could detect exactly 
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5. CONCLUSION

In this paper, we introduce a close form of new SMFP in which 
the directed Riemannian distance is calculated. With the as-
sumption of Spherical  spreading of underwater sound propa-
gation, we found that the geodesic path  in the fashion of Gre-
at circle. The performance of the proposed SMFP is verified in 
simulations, the true source could be detected if 20 modeled 
field replicas and 10 replicas of SONAR array data were used. 
The performance of the proposed STMP outperformed to that 
of standard algorithm at the expense of a little more of com-
putation. In future, one may justify the other type of sound 
spreading, namely cylindrical spreading. The main applicati-
ons of the proposed algorithm are floating ship localization, 
submarine localization in military section and fish finding in 
civilization. Besides, the trend of determining environmental 
parameters such as sound speed profile, bottom topography 
and array tilt is also developed. A SONAR system which is em-
bedded the proposed algorithm is suggested for the ships of 
Czech Republic Navy or cargo ships in commercial use.
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       (a)

       (b)
Fig. 5: Riemannian ambiguity surface for 20 modeled field repli-
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