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widths of the input and output ports. We showed that asym-
metric acoustic transmission is feasible by utilizing the mode 
conversion and cutoff. We also investigated the structural de-
pendence of the transmission rates of the bidirectional pro-
pagation.

2 MATERIALS AND METHODS

Fig. 1 shows our proposed structure for asymmetric acous-
tic transmission. The waveguide consists of two tapered 
sound hard boundaries with triangle-shaped gratings in 
the middle. The width w of the waveguide is 1.0 mm at the 
input port and 1.25 mm at the output port, and the len-
gth of the waveguide is 300.0 mm. The gratings are assu-
med to be made of aluminum whose Young’s modulus is  
70.0 GPa. All of the gratings are the same sizes, and the base of 
the triangle-shaped gratings is 5.0 mm and fixed on the sound 
hard boundary. The number N of the gratings, the height h of 
the gratings, and the distance d between the adjacent gra-
tings are the parameters.

Fig. 1: Structure of waveguide

1. INTRODUCTION

One-way sound transmission has been attracting increasing 
attention due to its potential applications in a variety of fields. 
Nonlinearity was initially used for one-way sound transmissi-
on [1, 2]. Liang et al. numerically demonstrated a simple one-
-dimensional model of an acoustic diode formed by coupling 
a superlattice with a strongly nonlinear medium [1]. They also 
experimentally demonstrated a rectified energy flux of acous-
tic waves [2]. 

Many researchers have been studying how to attain the 
unidirectional transmission of acoustic waves by using linear 
structures. Metasurfaces and metamaterials have been most 
frequently investigated for this purpose [3–10]. Zhu et al. ex-
perimentally demonstrated an acoustic tunnel that enables 
sound to pass only in one direction using a metasurface [3]. 
Chen et al. proposed an asymmetric device based on a one-
-dimensional layered structure using metamaterials [6]. 

In addition to metasurfaces and metamaterials, several 
structures have been proposed for unidirectional acoustic 
transmission [11–15]. Li et al. and Alagoz proposed a sonic crys-
tal acoustic diode and experimentally demonstrated one-way 
sound transmission [11, 12]. Sun et al. developed an acoustic 
diode using a thin brass plate with single-sided periodical gra-
ting structure immersed in water [13]. Zhu et al. proposed a 
straight and unblocked channel structure with unidirectional 
sound transmission [14]. Chen et al. investigated asymmetric 
Lamb wave propagation by using a graded metallic grating of 
varying depth [15]. 

In this study, we propose an asymmetric acoustic transmi-
ssion design using mode conversion in a waveguide with gra-
tings. We analyzed a 2D structure using COMSOL Multiphys-
ics with Acoustic Module. The software is based on the finite 
element method. Here, we dealt with only linear materials. We 
studied dispersion diagrams of a waveguide consisting of two 
parallel sound hard boundaries to determine the waveguide 
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We adapted the small-angle tapered waveguide because of 
eliminating the effect of mode conversion by a drastic change 
of the structure. By using high frequency acoustic waves, the 
device size can be reduced. Here, we took the fabrication of 
the device into consideration and decided the widths and the 
length of the waveguide. In this work, however, we discussed 
the characteristics numerically by using a 2D structure.

Fig. 2 shows the dispersion diagram of the waveguide that 
consists of two parallel sound hard boundaries. Here, no gra-
tings are incorporated and the widths w of the waveguide are 
1.0 and 1.25 mm. The solid and dotted lines show the results 
of the zeroth-order and the second-order modes. As shown in 
these figures, the angular wavenumbers of the zeroth-order 
mode are almost the same regardless of w. On the other hand, 
the cutoff frequencies of the second-order mode decreased as 
w increased. The cutoff frequencies are about 34 and 27kHz 
when w = 1.0 and 1.25 mm, respectively.

      (a)

      (b)
Fig. 4: Sound pressure level (a) from port 1 to 2 and (b) from port 
2 to 1

The gratings in the middle of the structure in Fig. 1 cause 
mode conversion from the zeroth-order mode to the se-
cond-order mode. Therefore, when a sound frequency is 
between 27 and 34 kHz, the incident plane wave from port  
1 (w = 1.0 mm) is converted into the second-order mode and 
transmits through port 2 (w = 1.25 mm) as shown in Fig. 3 (a). 
On the contrary, the incident plane wave from port 2 is con-
verted into the second-order mode and is cut off as shown in 
Fig. 3 (b). Here, we used an incident wave with a frequency of 
33.0 kHz.

3. RESULTS AND DISCUSSION

Fig. 4 shows the sound pressure level of the proposed structu-
re shown in Fig. 1. Here, the plane acoustic wave with a sound 
pressure of 0.1 Pa and a frequency of 33.0 kHz enters from 
(a) port 1 or (b) port 2. The number of the gratings N is 7, the 
height of the gratings h is 4.5 mm, and the distance between 
the adjacent gratings d is 10.0 mm. As shown in Fig. 4(a), the 
incident zeroth-order mode from port 1 is converted into the 
second-order mode by the gratings and transmits though port 
2. In contrast, Fig. 4(b)  shows that the incident zeroth-order 
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Fig. 2: Dispersion diagram when waveguide width is (a) 1.0 and 
(b) 1.25 mm
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Fig. 3: Wave propagation (a) from port 1 to 2 and (b) from port 
2 to 1
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Fig. 5 shows the results when a plane acoustic wave with a 
frequency of 33.0 kHz enters from the input port. It is under-
stood that T2 is always higher than T1 regardless of the para-
meter values while the transmission rates repeat high and low 
values. The differences between T1 and T2 also change with the 
parameter values. The transmission rates are presumed to de-
pend on mode conversion efficiency. Investigating a structure 
that increases themode conversion efficiency remains a future 
issue.

4 CONCLUSION

We proposed a design for asymmetric acoustic transmission 
using mode conversion in a waveguide with gratings. The 
gratings in the middle of the structure cause mode conver-
sion from the zeroth-order mode to the second-order mode. 
Asymmetric acoustic transmission was feasible by setting the 
waveguide widths so that the only one port is cut off for the 
second-order mode. We also investigated the structural de-
pendence of the transmission rates for bidirectional propaga-
tion. This theoretical study discussed the asymmetric acoustic 
transmission characteristics by using the 2D structure. It still 
remains a future issue to apply this method to a 3D structure 
and show the experimental results.

mode from port 2 is converted into the second-order mode by 
the gratings and is attenuated because the waveguide width 
of port 1 is narrow and the second-order mode becomes cut 
off. 

Next, we investigate the structural dependence of the tran-
smission rates of bidirectional propagation. Fig. 5 shows the 
transmission rates as a function of (a) the number N of the 
gratings, (b) the height h of the gratings, and (c) the distance 
d between the adjacent gratings. Here, T1

 and T2 are the tran-
smission rates when the zeroth-order mode enters from port 2 
and port 1, respectively. The transmmision rates are calculates 
as follows

where 
Win  is the sound power of the incident wave and Wj is the 
sound power of the output at the port j. 
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d is 10.0 mm. As shown in Fig. 4(a), the 
incident zeroth-order mode from port 1 is 
converted into the second-order mode by 
the gratings and transmits though port 2. 
In contrast, Fig. 4(b)  shows that the 
incident zeroth-order mode from port 2 is 
converted into the second-order mode by 
the gratings and is attenuated because the 
waveguide width of port 1 is narrow and 
the second-order mode becomes cut off. 

Next, we investigate the structural 
dependence of the transmission rates of 
bidirectional propagation. Fig. 5 shows the 
transmission rates as a function of (a) the 
number N of the gratings, (b) the height h 
of the gratings, and (c) the distance d 
between the adjacent gratings. Here, T1 
and T2 are the transmission rates when the 
zeroth-order mode enters from port 2 and 
port 1, respectively.   The transmission 
rates are calculated as follows. 

𝑇𝑇𝑗𝑗 =
𝑊𝑊𝑗𝑗
𝑊𝑊𝑖𝑖𝑖𝑖

, 𝑗𝑗 = 1, 2, 

where Win is the sound power of the 
incident wave and Wj is the sound power 

 
(a) 

 
(b) 

 
(c) 

Fig. 5: Transmission rates as function of 
(a) N, (b) h, and (c) d 
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