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Semi-active noise treatments can be realized with variable 
stiffness and damping control, compare [5] and [6], or with sti-
ffness-switch systems as reported in [7]. Furthermore concepts 
based on magnetorheological dampers, compare [8], and  
piezoelectric actuators, see [9], have been analyzed. 

Another typical example is the electro-mechanical relaxati-
on absorber (EMRA), as described in [10]. Such an EMRA can be 
understood as the combination of a DVA, attached to the sur-
face a vibrating structure, and a dissipative network (DN) con-
sisting of an electrical resistance in serial connection with an 
inductor. The DN is designed to dissipate the kinetic energy of 
the structure. The application of EMRA allows to solve the pro-
blem of scalability, because every single device contributes to 
the increase of damping. Furthermore it is possible to tune the 
connected DN to a specific application without changing the 
design of the underlying DVA. For these reasons the concept 
of noise control based on an EMRA is analyzed theoretically 
in the presented paper. To focus on the general performance 
principle, the investigations are presented in a dimensionless 
analysis. At first the equations of motion will be derived from 
a simplified model. In a second step, the noise control poten-
tial will be discussed. The paper ends with concluding remarks 
and a short outlook on future work.         

2. A SIMPLIFIED MODELLING OF  
ELECTRO-MECHANICAL RELAXATION  
ABSORBER

2.1. Simplified model and equation of motion
As outlined in section 1 an EMRA consists of a DVA that is 

connected to an electric network. The DVA is attached to 
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1. INTRODUCTION

A significant reduction of airborne or structure-borne noise 
can be realized with passive, active or semi-active noise sys-
tems. A recapitulatory review on these approaches is given in 
[1].

Passive systems such as dynamic vibration absorber (DVA), 
compare [2], are very robust. They are usually designed to 
obtain a broadband performance, not only to neutralize the 
excitation force at a specific frequency. In order to realize this 
goal, it isessential to adjust the damping of the visco-elastic 
mount to an optimal value. DVA’s are very robust. Because noi-
se reduction is obtained by dissipation, several DVA’s can be 
applied – without coupling – to increase the control profit. For 
this reason the performance is scalable and increased with the 
number of DVA’s, the devices are not attached to nodal points.

In contrast to passive treatments active control systems, 
compare [3], are based on the principle of destructive interfe-
rence. Thus, the excitation force is neutralized. This approach 
is very effective in the control volume is small as known from 
active headphones and single-input/single-output (SISO) con-
trol can be applied. If distributed control is required, multiple-
-input/multiple-output (MIMO) systems are required as known 
from the problem of active control of propeller-aircraft interior 
noise, compare [4]. As described in [3] the placement of sen-
sors and actuators in such distributed control problems must 
be well chosen to ensure both observability and controllabi-
lity. For this reason a MIMO active control systems is unique 
and not the result of a scaled approach based on multiple SISO 
systems. This is an up to now unsolved problem that prevents 
standardization and limits the application of distributed sys-
tems to a limited number of specific applications.   
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          (4)

w0  is an angular frequency defined by the ratio of stiffness 
and mass of the vibrating structure. 

D is the dimensionless structural damping ratio and 
E  is the dimensionless damping ratio of the DN. The latter is 

introduced as the ratio between electrical resistance and 
inductance normalized to w0. 

Furthermore, relative values for the remaining elements 
have been introduced, compare Eqn. (5).

                (5)
b is a relative viscosity obtained by normalizing the viscosity 

of the DVA-mount to the viscosity of the vibrating structu-
re. g can be interpreted as a dimensionless force factor. Ho-
wever it represents a mechanical viscosity, given by T2/R, 
that is normalized by using the viscosity of the vibrating 
structure. 

m is the relative mass and 
n  the stiffness ratio. 
 To proceed it is also necessary to introduce the generalized 

displacement 
xQ as defined its time derivative, compare Eqn. (6)

            (6)
Based on w0 the dimensionless time r can be introduced as 
well as the corresponding derivatives. These definitions are 
given in Eqn. (7)

                (7)

Finally it is necessary to introduce dimensionless coordinates 
representing the degrees of freedom for structure (yS), DVA 
(yE), and DN (yQ) as well the dimensionless excitation force fs, 
compare Eqn. (8). x0 is an arbitrarily chosen factor and used to 
normalize the physical coordinates.

                (8)

The resulting set of dimensionless equations of motion 
is summarized in Eqn. (9) – (11). It is worth mentioning that 
the number of constants is reduced from nine, compare  
Eqn. (1) – (3), down to six, if the problem is analysed in a di-
mensionless formulation. This is important, if optimization is 
used in the future to find an optimal set of parameter.

                 (9)

   (10)

  (11)

Assuming time-harmonic fluctuations of all quantities accor-
ding to the normalized frequency f given by the ratio of angu-
lar excitation frequency W and w0, compare Eqn. (12)

the vibrating structure via a visco-elastic mount. A simplified 
representation is shown in Fig. 1, where MS represents the 
mass (SI-unit: kg) of a vibrating surface, while MS is the mass 
of the EMRA attached to reduce the vibration level, and thus 
the noise radiation. The stiffness of the structure is represen-
ted by KS (SI-unit: N/m). BS represents structural damping  
(SI-unit: Ns/m). The visco-elastic properties of the  
EMRA-mount are described by BS and BE. The force factor  
T (SI-unit N/A) is used to model the electro-mechanical 
coupling. R is the electrical resistance (SI-unit: V/A) and L is 
the inductance (SI-unit: Vs/A) of the DN. The elements of the 
electro-mechanical network are assumed to have linear and 
time-invariant properties.

Fig. 1: Vibrating structure with semi-active vibration absorber

As also shown in Fig. 1., three coordinates have been in-
troduced to describe the dynamics of the coupled system. 
These are: xS (SI-unit: m) – the displacement of the vibra-
ting structure, xE – the displacement of the DVA xS, and  
i (SI-unit: A) – the electric current in the DN that is later on 
replaced by the electric charge q (SI-unit: As) considering  
i = dq/dt. All coordinates are time-dependent variables de-
pending on the physical time t (SI-unit: s). The excitation force  
Fs (SI-unit: N) is introduced to model the noise source. Static 
deflection has not been taken into account.

Applying the laws of NEWTON and KIRCHHOFF it is possi-
ble to derive the set of equations of motion represented by  
Eqn. (1) – (3). These are ordinary differential equations of se-
cond order depending on time. All equations are linear. Be-
cause all elements are time-invariant, all nine coefficients 
are constant in time. The right-hand-side is determined by  
the excitation force.

                 (1)

                  (2)

           (3)

2.2. Dimensionless formulation of system equation
To reduce the complexity and to focus on the general per-

formance principle, the equations of motions are transformed 
to a non-dimensional representation of the problem. For this 
reason, the abbreviations listed in Eqn. (4) have been introdu-
ced.
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Semi-active noise treatments can be realized with variable stiffness and damping control, compare [5] 
and [6], or with stiffness-switch systems as reported in [7]. Furthermore concepts based on 
magnetorheological dampers, compare [8], and piezoelectric actuators, see [9], have been analyzed.  
 
Another typical example is the electro-mechanical relaxation absorber (EMRA), as described in [10]. 
Such an EMRA can be understood as the combination of a DVA, attached to the surface a vibrating 
structure, and a dissipative network (DN) consisting of an electrical resistance in serial connection with 
an inductor. The DN is designed to dissipate the kinetic energy of the structure. The application of 
EMRA allows to solve the problem of scalability, because every single device contributes to the increase 
of damping. Furthermore it is possible to tune the connected DN to a specific application without 
changing the design of the underlying DVA. For these reasons the concept of noise control based on 
an EMRA is analyzed theoretically in the presented paper. To focus on the general performance 
principle, the investigations are presented in a dimensionless analysis. At first the equations of motion 
will be derived from a simplified model. In a second step, the noise control potential will be discussed. 
The paper ends with concluding remarks and a short outlook on future work.          

 
 

2. A SIMPLIFIED MODELLING OF ELECTRO-MECHANICAL RELAXATION ABSORBER 
 
2.1. Simplified model and equation of motion 
As outlined in section 1 an EMRA consists of a DVA that is connected to an electric network. The DVA 
is attached to the vibrating structure via a visco-elastic mount. A simplified representation is shown in 
Fig. 1, where MS represents the mass (SI-unit: kg) of a vibrating surface, while MS is the mass of the 
EMRA attached to reduce the vibration level, and thus the noise radiation. The stiffness of the structure 
is represented by KS (SI-unit: N/m). BS represents structural damping (SI-unit: Ns/m). The visco-elastic 
properties of the EMRA-mount are described by BS and BE. The force factor T (SI-unit N/A) is used to 
model the electro-mechanical coupling. R is the electrical resistance (SI-unit: V/A) and L is the 
inductance (SI-unit: Vs/A) of the DN. The elements of the electro-mechanical network are assumed to 
have linear and time-invariant properties. 
 
Fig. 1: Vibrating structure with semi-active vibration absorber 
As also shown in Fig. 1., three coordinates have been introduced to describe the dynamics of the 
coupled system. These are: xS (SI-unit: m) – the displacement of the vibrating structure, xE – the 
displacement of the DVA xS, and i (SI-unit: A) – the electric current in the DN that is later on replaced 
by the electric charge q (SI-unit: As) considering i = dq/dt. All coordinates are time-dependent variables 
depending on the physical time t (SI-unit: s). The excitation force Fs (SI-unit: N) is introduced to model 
the noise source. Static deflection has not been taken into account. 
 
Applying the laws of NEWTON and KIRCHHOFF it is possible to derive the set of equations of motion 
represented by Eqn. (1) – (3). These are ordinary differential equations of second order depending on 
time. All equations are linear. Because alle elements are time-invariant, all nine coefficients are 
constant in time. The right-hand-side is determined by the excitation force. 

𝑴𝑴𝑺𝑺
𝒅𝒅𝟐𝟐𝒙𝒙𝑺𝑺
𝒅𝒅𝒕𝒕𝟐𝟐 + (𝑩𝑩𝑺𝑺 + 𝑩𝑩𝑬𝑬)𝒅𝒅𝒙𝒙𝑺𝑺𝒅𝒅𝒕𝒕 − 𝑩𝑩𝑬𝑬

𝒅𝒅𝒙𝒙𝑬𝑬
𝒅𝒅𝒕𝒕 + 𝑻𝑻𝒅𝒅𝒅𝒅𝒅𝒅𝒕𝒕 + (𝑲𝑲𝑺𝑺 + 𝑲𝑲𝑬𝑬)𝒙𝒙𝑺𝑺 − 𝑲𝑲𝑬𝑬𝒙𝒙𝑬𝑬 = 𝑭𝑭𝑺𝑺 (1) 
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𝑴𝑴𝑺𝑺
𝒅𝒅𝟐𝟐𝒙𝒙𝑬𝑬
𝒅𝒅𝒕𝒕𝟐𝟐 − 𝑩𝑩𝑬𝑬

𝒅𝒅𝒙𝒙𝑺𝑺
𝒅𝒅𝒕𝒕 + 𝑩𝑩𝑬𝑬

𝒅𝒅𝒙𝒙𝑬𝑬
𝒅𝒅𝒕𝒕 − 𝑻𝑻𝒅𝒅𝒅𝒅𝒅𝒅𝒕𝒕 − 𝑲𝑲𝑬𝑬𝒙𝒙𝑺𝑺 + 𝑲𝑲𝑬𝑬𝒙𝒙𝑬𝑬 = 𝟎𝟎 (2) 

𝑳𝑳𝒅𝒅
𝟐𝟐𝒅𝒅
𝒅𝒅𝒕𝒕𝟐𝟐 − 𝑻𝑻𝒅𝒅𝒙𝒙𝑺𝑺𝒅𝒅𝒕𝒕 + 𝑻𝑻𝒅𝒅𝒙𝒙𝑬𝑬𝒅𝒅𝒕𝒕 + 𝑹𝑹𝒅𝒅𝒅𝒅𝒅𝒅𝒕𝒕 = 𝟎𝟎 (3) 

 
2.2. Dimensionless formulation of system equation 
To reduce the complexity and to focus on the general performance principle, the equations of motions 
are transformed to a non-dimensional representation of the problem. For this reason, the 
abbreviations listed in Eqn. (4) have been introduced. 

𝒘𝒘𝟎𝟎
𝟐𝟐 ∶= 𝑲𝑲𝑺𝑺

𝑴𝑴𝑺𝑺
          𝟐𝟐𝟐𝟐𝒘𝒘𝟎𝟎 ∶=

𝑩𝑩𝑺𝑺
𝑴𝑴𝑺𝑺

 𝟐𝟐𝑬𝑬𝒘𝒘 ∶= 𝑹𝑹
𝑳𝑳𝒘𝒘𝟎𝟎

 (4) 

 
w0 is an angular frequency defined by the ratio of stiffness and mass of the vibrating structure. D is the 
dimensionless structural damping ratio and E is the dimensionless damping ratio of the DN. The latter 
is introduced as the ratio between electrical resistance and inductance normalized to w0. Furthermore, 
relative values for the remaining elements have been introduced, compare Eqn. (5). 

𝒃𝒃 ∶= 𝑩𝑩𝑬𝑬
𝑩𝑩𝑺𝑺

 𝒈𝒈 ∶= 𝑻𝑻𝟐𝟐
𝑹𝑹𝑩𝑩𝑺𝑺

 𝒎𝒎 ∶= 𝑴𝑴𝑬𝑬
𝑴𝑴𝑺𝑺

 𝒏𝒏 ∶= 𝑲𝑲𝑬𝑬
𝑲𝑲𝑺𝑺

 (5) 

 
b is a relative viscosity obtained by normalizing the viscosity of the DVA-mount to the viscosity of the 
vibrating structure. g can be interpreted as a dimensionless force factor. However it represents a 
mechanical viscosity, given by T2/R, that is normalized by using the viscosity of the vibrating structure. 
m is the relative mass and n the stiffness ratio. To proceed it is also necessary to introduce the 
generalized displacement xQ as defined its time derivative, compare Eqn. (6) 

𝒅𝒅𝒙𝒙𝑸𝑸
𝒅𝒅𝒕𝒕 ∶= (𝑻𝑻 𝑩𝑩𝑺𝑺)⁄ 𝒅𝒅𝒅𝒅

𝒅𝒅𝒕𝒕  (6) 

 
Based on w0 the dimensionless time r can be introduced as well as the corresponding derivatives. These 
definitions are given in Eqn. (7)  

𝒓𝒓 ∶= 𝒘𝒘𝟎𝟎𝒕𝒕 
𝒅𝒅(. )
𝒅𝒅𝒕𝒕 = 𝒅𝒅(. )

𝒅𝒅𝒓𝒓  𝒅𝒅𝒓𝒓
𝒅𝒅𝒕𝒕 ∶=

𝒘𝒘𝟎𝟎𝒅𝒅(. )
𝒅𝒅𝒓𝒓  

𝒅𝒅𝟐𝟐(. )
𝒅𝒅𝒕𝒕𝟐𝟐 = 𝒅𝒅𝟐𝟐(. )

𝒅𝒅𝒓𝒓𝟐𝟐  
𝒅𝒅𝟐𝟐𝒓𝒓
𝒅𝒅𝒕𝒕𝟐𝟐 ∶=

𝒘𝒘𝟎𝟎
𝟐𝟐𝒅𝒅𝟐𝟐(. )
𝒅𝒅𝒓𝒓𝟐𝟐  (7) 

 
Finally it is necessary to introduce dimensionless coordinates representing the degrees of freedom for 
structure (yS), DVA (yE), and DN (yQ) as well the dimensionless excitation force fs, compare Eqn. (8). x0 is 
an arbitrarily chosen factor and used to normalize the physical coordinates. 

𝒚𝒚𝑺𝑺 ∶=
𝒙𝒙𝑺𝑺
𝒙𝒙𝟎𝟎

 𝒚𝒚𝑬𝑬 ∶=
𝒙𝒙𝑬𝑬
𝒙𝒙𝟎𝟎

 𝒚𝒚𝑸𝑸 ∶=
𝒙𝒙𝑸𝑸
𝒙𝒙𝟎𝟎

 𝒇𝒇𝑺𝑺 ∶=
𝑭𝑭𝑺𝑺

𝑳𝑳𝒘𝒘𝟎𝟎
𝟐𝟐𝒙𝒙𝟎𝟎

 (8) 

         
The resulting set of dimensionless equations of motion is summarized in Eqn. (9) – (11). It is worth 
mentioning that the number of constants is reduced from nine, compare Eqn. (1) – (3), down to six, if 
the problem is analysed in a dimensionless formulation. This is important, if optimization is used in the 
future to find an optimal set of parameter. 

𝒅𝒅𝟐𝟐𝒚𝒚𝑺𝑺
𝒅𝒅𝒓𝒓𝟐𝟐 + 𝟐𝟐𝟐𝟐(𝟏𝟏 + 𝒃𝒃)𝒅𝒅𝒚𝒚𝑺𝑺𝒅𝒅𝒓𝒓 − 𝟐𝟐𝟐𝟐𝒃𝒃𝒅𝒅𝒚𝒚𝑬𝑬𝒅𝒅𝒓𝒓 + 𝟐𝟐𝟐𝟐

𝒅𝒅𝒚𝒚𝑸𝑸
𝒅𝒅𝒓𝒓 + (𝟏𝟏 + 𝒏𝒏)𝒚𝒚𝑺𝑺 − 𝒏𝒏𝒚𝒚𝑬𝑬 = 𝒇𝒇𝑺𝑺 (9) 

𝒎𝒎𝒅𝒅𝟐𝟐𝒚𝒚𝑬𝑬
𝒅𝒅𝒓𝒓𝟐𝟐 − 𝟐𝟐𝟐𝟐𝒃𝒃𝒅𝒅𝒚𝒚𝑺𝑺𝒅𝒅𝒓𝒓 + 𝟐𝟐𝟐𝟐𝒃𝒃𝒅𝒅𝒚𝒚𝑬𝑬𝒅𝒅𝒓𝒓 − 𝟐𝟐𝟐𝟐

𝒅𝒅𝒚𝒚𝑸𝑸
𝒅𝒅𝒓𝒓 − 𝒏𝒏𝒚𝒚𝑺𝑺 + 𝒏𝒏𝒚𝒚𝑬𝑬 = 𝟎𝟎 (10) 
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𝑴𝑴𝑺𝑺
𝒅𝒅𝟐𝟐𝒙𝒙𝑬𝑬
𝒅𝒅𝒕𝒕𝟐𝟐 − 𝑩𝑩𝑬𝑬

𝒅𝒅𝒙𝒙𝑺𝑺
𝒅𝒅𝒕𝒕 + 𝑩𝑩𝑬𝑬

𝒅𝒅𝒙𝒙𝑬𝑬
𝒅𝒅𝒕𝒕 − 𝑻𝑻𝒅𝒅𝒅𝒅𝒅𝒅𝒕𝒕 − 𝑲𝑲𝑬𝑬𝒙𝒙𝑺𝑺 + 𝑲𝑲𝑬𝑬𝒙𝒙𝑬𝑬 = 𝟎𝟎 (2) 

𝑳𝑳𝒅𝒅
𝟐𝟐𝒅𝒅
𝒅𝒅𝒕𝒕𝟐𝟐 − 𝑻𝑻𝒅𝒅𝒙𝒙𝑺𝑺𝒅𝒅𝒕𝒕 + 𝑻𝑻𝒅𝒅𝒙𝒙𝑬𝑬𝒅𝒅𝒕𝒕 + 𝑹𝑹𝒅𝒅𝒅𝒅𝒅𝒅𝒕𝒕 = 𝟎𝟎 (3) 

 
2.2. Dimensionless formulation of system equation 
To reduce the complexity and to focus on the general performance principle, the equations of motions 
are transformed to a non-dimensional representation of the problem. For this reason, the 
abbreviations listed in Eqn. (4) have been introduced. 

𝒘𝒘𝟎𝟎
𝟐𝟐 ∶= 𝑲𝑲𝑺𝑺

𝑴𝑴𝑺𝑺
          𝟐𝟐𝟐𝟐𝒘𝒘𝟎𝟎 ∶=

𝑩𝑩𝑺𝑺
𝑴𝑴𝑺𝑺

 𝟐𝟐𝑬𝑬𝒘𝒘 ∶= 𝑹𝑹
𝑳𝑳𝒘𝒘𝟎𝟎

 (4) 

 
w0 is an angular frequency defined by the ratio of stiffness and mass of the vibrating structure. D is the 
dimensionless structural damping ratio and E is the dimensionless damping ratio of the DN. The latter 
is introduced as the ratio between electrical resistance and inductance normalized to w0. Furthermore, 
relative values for the remaining elements have been introduced, compare Eqn. (5). 

𝒃𝒃 ∶= 𝑩𝑩𝑬𝑬
𝑩𝑩𝑺𝑺

 𝒈𝒈 ∶= 𝑻𝑻𝟐𝟐
𝑹𝑹𝑩𝑩𝑺𝑺

 𝒎𝒎 ∶= 𝑴𝑴𝑬𝑬
𝑴𝑴𝑺𝑺

 𝒏𝒏 ∶= 𝑲𝑲𝑬𝑬
𝑲𝑲𝑺𝑺

 (5) 

 
b is a relative viscosity obtained by normalizing the viscosity of the DVA-mount to the viscosity of the 
vibrating structure. g can be interpreted as a dimensionless force factor. However it represents a 
mechanical viscosity, given by T2/R, that is normalized by using the viscosity of the vibrating structure. 
m is the relative mass and n the stiffness ratio. To proceed it is also necessary to introduce the 
generalized displacement xQ as defined its time derivative, compare Eqn. (6) 

𝒅𝒅𝒙𝒙𝑸𝑸
𝒅𝒅𝒕𝒕 ∶= (𝑻𝑻 𝑩𝑩𝑺𝑺)⁄ 𝒅𝒅𝒅𝒅

𝒅𝒅𝒕𝒕  (6) 

 
Based on w0 the dimensionless time r can be introduced as well as the corresponding derivatives. These 
definitions are given in Eqn. (7)  

𝒓𝒓 ∶= 𝒘𝒘𝟎𝟎𝒕𝒕 
𝒅𝒅(. )
𝒅𝒅𝒕𝒕 = 𝒅𝒅(. )

𝒅𝒅𝒓𝒓  𝒅𝒅𝒓𝒓
𝒅𝒅𝒕𝒕 ∶=

𝒘𝒘𝟎𝟎𝒅𝒅(. )
𝒅𝒅𝒓𝒓  

𝒅𝒅𝟐𝟐(. )
𝒅𝒅𝒕𝒕𝟐𝟐 = 𝒅𝒅𝟐𝟐(. )

𝒅𝒅𝒓𝒓𝟐𝟐  
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𝒅𝒅𝒕𝒕𝟐𝟐 ∶=

𝒘𝒘𝟎𝟎
𝟐𝟐𝒅𝒅𝟐𝟐(. )
𝒅𝒅𝒓𝒓𝟐𝟐  (7) 

 
Finally it is necessary to introduce dimensionless coordinates representing the degrees of freedom for 
structure (yS), DVA (yE), and DN (yQ) as well the dimensionless excitation force fs, compare Eqn. (8). x0 is 
an arbitrarily chosen factor and used to normalize the physical coordinates. 

𝒚𝒚𝑺𝑺 ∶=
𝒙𝒙𝑺𝑺
𝒙𝒙𝟎𝟎

 𝒚𝒚𝑬𝑬 ∶=
𝒙𝒙𝑬𝑬
𝒙𝒙𝟎𝟎

 𝒚𝒚𝑸𝑸 ∶=
𝒙𝒙𝑸𝑸
𝒙𝒙𝟎𝟎

 𝒇𝒇𝑺𝑺 ∶=
𝑭𝑭𝑺𝑺

𝑳𝑳𝒘𝒘𝟎𝟎
𝟐𝟐𝒙𝒙𝟎𝟎

 (8) 

         
The resulting set of dimensionless equations of motion is summarized in Eqn. (9) – (11). It is worth 
mentioning that the number of constants is reduced from nine, compare Eqn. (1) – (3), down to six, if 
the problem is analysed in a dimensionless formulation. This is important, if optimization is used in the 
future to find an optimal set of parameter. 

𝒅𝒅𝟐𝟐𝒚𝒚𝑺𝑺
𝒅𝒅𝒓𝒓𝟐𝟐 + 𝟐𝟐𝟐𝟐(𝟏𝟏 + 𝒃𝒃)𝒅𝒅𝒚𝒚𝑺𝑺𝒅𝒅𝒓𝒓 − 𝟐𝟐𝟐𝟐𝒃𝒃𝒅𝒅𝒚𝒚𝑬𝑬𝒅𝒅𝒓𝒓 + 𝟐𝟐𝟐𝟐

𝒅𝒅𝒚𝒚𝑸𝑸
𝒅𝒅𝒓𝒓 + (𝟏𝟏 + 𝒏𝒏)𝒚𝒚𝑺𝑺 − 𝒏𝒏𝒚𝒚𝑬𝑬 = 𝒇𝒇𝑺𝑺 (9) 

𝒎𝒎𝒅𝒅𝟐𝟐𝒚𝒚𝑬𝑬
𝒅𝒅𝒓𝒓𝟐𝟐 − 𝟐𝟐𝟐𝟐𝒃𝒃𝒅𝒅𝒚𝒚𝑺𝑺𝒅𝒅𝒓𝒓 + 𝟐𝟐𝟐𝟐𝒃𝒃𝒅𝒅𝒚𝒚𝑬𝑬𝒅𝒅𝒓𝒓 − 𝟐𝟐𝟐𝟐

𝒅𝒅𝒚𝒚𝑸𝑸
𝒅𝒅𝒓𝒓 − 𝒏𝒏𝒚𝒚𝑺𝑺 + 𝒏𝒏𝒚𝒚𝑬𝑬 = 𝟎𝟎 (10) 
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𝑴𝑴𝑺𝑺
𝒅𝒅𝟐𝟐𝒙𝒙𝑬𝑬
𝒅𝒅𝒕𝒕𝟐𝟐 − 𝑩𝑩𝑬𝑬

𝒅𝒅𝒙𝒙𝑺𝑺
𝒅𝒅𝒕𝒕 + 𝑩𝑩𝑬𝑬

𝒅𝒅𝒙𝒙𝑬𝑬
𝒅𝒅𝒕𝒕 − 𝑻𝑻𝒅𝒅𝒅𝒅𝒅𝒅𝒕𝒕 − 𝑲𝑲𝑬𝑬𝒙𝒙𝑺𝑺 + 𝑲𝑲𝑬𝑬𝒙𝒙𝑬𝑬 = 𝟎𝟎 (2) 
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𝒅𝒅𝒕𝒕𝟐𝟐 − 𝑻𝑻𝒅𝒅𝒙𝒙𝑺𝑺𝒅𝒅𝒕𝒕 + 𝑻𝑻𝒅𝒅𝒙𝒙𝑬𝑬𝒅𝒅𝒕𝒕 + 𝑹𝑹𝒅𝒅𝒅𝒅𝒅𝒅𝒕𝒕 = 𝟎𝟎 (3) 

 
2.2. Dimensionless formulation of system equation 
To reduce the complexity and to focus on the general performance principle, the equations of motions 
are transformed to a non-dimensional representation of the problem. For this reason, the 
abbreviations listed in Eqn. (4) have been introduced. 

𝒘𝒘𝟎𝟎
𝟐𝟐 ∶= 𝑲𝑲𝑺𝑺

𝑴𝑴𝑺𝑺
          𝟐𝟐𝟐𝟐𝒘𝒘𝟎𝟎 ∶=

𝑩𝑩𝑺𝑺
𝑴𝑴𝑺𝑺

 𝟐𝟐𝑬𝑬𝒘𝒘 ∶= 𝑹𝑹
𝑳𝑳𝒘𝒘𝟎𝟎

 (4) 

 
w0 is an angular frequency defined by the ratio of stiffness and mass of the vibrating structure. D is the 
dimensionless structural damping ratio and E is the dimensionless damping ratio of the DN. The latter 
is introduced as the ratio between electrical resistance and inductance normalized to w0. Furthermore, 
relative values for the remaining elements have been introduced, compare Eqn. (5). 

𝒃𝒃 ∶= 𝑩𝑩𝑬𝑬
𝑩𝑩𝑺𝑺

 𝒈𝒈 ∶= 𝑻𝑻𝟐𝟐
𝑹𝑹𝑩𝑩𝑺𝑺

 𝒎𝒎 ∶= 𝑴𝑴𝑬𝑬
𝑴𝑴𝑺𝑺

 𝒏𝒏 ∶= 𝑲𝑲𝑬𝑬
𝑲𝑲𝑺𝑺

 (5) 

 
b is a relative viscosity obtained by normalizing the viscosity of the DVA-mount to the viscosity of the 
vibrating structure. g can be interpreted as a dimensionless force factor. However it represents a 
mechanical viscosity, given by T2/R, that is normalized by using the viscosity of the vibrating structure. 
m is the relative mass and n the stiffness ratio. To proceed it is also necessary to introduce the 
generalized displacement xQ as defined its time derivative, compare Eqn. (6) 

𝒅𝒅𝒙𝒙𝑸𝑸
𝒅𝒅𝒕𝒕 ∶= (𝑻𝑻 𝑩𝑩𝑺𝑺)⁄ 𝒅𝒅𝒅𝒅

𝒅𝒅𝒕𝒕  (6) 

 
Based on w0 the dimensionless time r can be introduced as well as the corresponding derivatives. These 
definitions are given in Eqn. (7)  

𝒓𝒓 ∶= 𝒘𝒘𝟎𝟎𝒕𝒕 
𝒅𝒅(. )
𝒅𝒅𝒕𝒕 = 𝒅𝒅(. )
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𝒅𝒅𝒓𝒓𝟐𝟐  (7) 

 
Finally it is necessary to introduce dimensionless coordinates representing the degrees of freedom for 
structure (yS), DVA (yE), and DN (yQ) as well the dimensionless excitation force fs, compare Eqn. (8). x0 is 
an arbitrarily chosen factor and used to normalize the physical coordinates. 

𝒚𝒚𝑺𝑺 ∶=
𝒙𝒙𝑺𝑺
𝒙𝒙𝟎𝟎

 𝒚𝒚𝑬𝑬 ∶=
𝒙𝒙𝑬𝑬
𝒙𝒙𝟎𝟎

 𝒚𝒚𝑸𝑸 ∶=
𝒙𝒙𝑸𝑸
𝒙𝒙𝟎𝟎

 𝒇𝒇𝑺𝑺 ∶=
𝑭𝑭𝑺𝑺

𝑳𝑳𝒘𝒘𝟎𝟎
𝟐𝟐𝒙𝒙𝟎𝟎

 (8) 

         
The resulting set of dimensionless equations of motion is summarized in Eqn. (9) – (11). It is worth 
mentioning that the number of constants is reduced from nine, compare Eqn. (1) – (3), down to six, if 
the problem is analysed in a dimensionless formulation. This is important, if optimization is used in the 
future to find an optimal set of parameter. 

𝒅𝒅𝟐𝟐𝒚𝒚𝑺𝑺
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2.2. Dimensionless formulation of system equation 
To reduce the complexity and to focus on the general performance principle, the equations of motions 
are transformed to a non-dimensional representation of the problem. For this reason, the 
abbreviations listed in Eqn. (4) have been introduced. 

𝒘𝒘𝟎𝟎
𝟐𝟐 ∶= 𝑲𝑲𝑺𝑺
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 𝟐𝟐𝑬𝑬𝒘𝒘 ∶= 𝑹𝑹
𝑳𝑳𝒘𝒘𝟎𝟎

 (4) 

 
w0 is an angular frequency defined by the ratio of stiffness and mass of the vibrating structure. D is the 
dimensionless structural damping ratio and E is the dimensionless damping ratio of the DN. The latter 
is introduced as the ratio between electrical resistance and inductance normalized to w0. Furthermore, 
relative values for the remaining elements have been introduced, compare Eqn. (5). 

𝒃𝒃 ∶= 𝑩𝑩𝑬𝑬
𝑩𝑩𝑺𝑺

 𝒈𝒈 ∶= 𝑻𝑻𝟐𝟐
𝑹𝑹𝑩𝑩𝑺𝑺

 𝒎𝒎 ∶= 𝑴𝑴𝑬𝑬
𝑴𝑴𝑺𝑺

 𝒏𝒏 ∶= 𝑲𝑲𝑬𝑬
𝑲𝑲𝑺𝑺

 (5) 

 
b is a relative viscosity obtained by normalizing the viscosity of the DVA-mount to the viscosity of the 
vibrating structure. g can be interpreted as a dimensionless force factor. However it represents a 
mechanical viscosity, given by T2/R, that is normalized by using the viscosity of the vibrating structure. 
m is the relative mass and n the stiffness ratio. To proceed it is also necessary to introduce the 
generalized displacement xQ as defined its time derivative, compare Eqn. (6) 

𝒅𝒅𝒙𝒙𝑸𝑸
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𝒅𝒅𝒕𝒕  (6) 

 
Based on w0 the dimensionless time r can be introduced as well as the corresponding derivatives. These 
definitions are given in Eqn. (7)  

𝒓𝒓 ∶= 𝒘𝒘𝟎𝟎𝒕𝒕 
𝒅𝒅(. )
𝒅𝒅𝒕𝒕 = 𝒅𝒅(. )
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Finally it is necessary to introduce dimensionless coordinates representing the degrees of freedom for 
structure (yS), DVA (yE), and DN (yQ) as well the dimensionless excitation force fs, compare Eqn. (8). x0 is 
an arbitrarily chosen factor and used to normalize the physical coordinates. 

𝒚𝒚𝑺𝑺 ∶=
𝒙𝒙𝑺𝑺
𝒙𝒙𝟎𝟎
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𝑳𝑳𝒘𝒘𝟎𝟎
𝟐𝟐𝒙𝒙𝟎𝟎

 (8) 

         
The resulting set of dimensionless equations of motion is summarized in Eqn. (9) – (11). It is worth 
mentioning that the number of constants is reduced from nine, compare Eqn. (1) – (3), down to six, if 
the problem is analysed in a dimensionless formulation. This is important, if optimization is used in the 
future to find an optimal set of parameter. 
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are transformed to a non-dimensional representation of the problem. For this reason, the 
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is introduced as the ratio between electrical resistance and inductance normalized to w0. Furthermore, 
relative values for the remaining elements have been introduced, compare Eqn. (5). 

𝒃𝒃 ∶= 𝑩𝑩𝑬𝑬
𝑩𝑩𝑺𝑺

 𝒈𝒈 ∶= 𝑻𝑻𝟐𝟐
𝑹𝑹𝑩𝑩𝑺𝑺

 𝒎𝒎 ∶= 𝑴𝑴𝑬𝑬
𝑴𝑴𝑺𝑺

 𝒏𝒏 ∶= 𝑲𝑲𝑬𝑬
𝑲𝑲𝑺𝑺

 (5) 

 
b is a relative viscosity obtained by normalizing the viscosity of the DVA-mount to the viscosity of the 
vibrating structure. g can be interpreted as a dimensionless force factor. However it represents a 
mechanical viscosity, given by T2/R, that is normalized by using the viscosity of the vibrating structure. 
m is the relative mass and n the stiffness ratio. To proceed it is also necessary to introduce the 
generalized displacement xQ as defined its time derivative, compare Eqn. (6) 

𝒅𝒅𝒙𝒙𝑸𝑸
𝒅𝒅𝒕𝒕 ∶= (𝑻𝑻 𝑩𝑩𝑺𝑺)⁄ 𝒅𝒅𝒅𝒅

𝒅𝒅𝒕𝒕  (6) 

 
Based on w0 the dimensionless time r can be introduced as well as the corresponding derivatives. These 
definitions are given in Eqn. (7)  

𝒓𝒓 ∶= 𝒘𝒘𝟎𝟎𝒕𝒕 
𝒅𝒅(. )
𝒅𝒅𝒕𝒕 = 𝒅𝒅(. )

𝒅𝒅𝒓𝒓  𝒅𝒅𝒓𝒓
𝒅𝒅𝒕𝒕 ∶=

𝒘𝒘𝟎𝟎𝒅𝒅(. )
𝒅𝒅𝒓𝒓  

𝒅𝒅𝟐𝟐(. )
𝒅𝒅𝒕𝒕𝟐𝟐 = 𝒅𝒅𝟐𝟐(. )

𝒅𝒅𝒓𝒓𝟐𝟐  
𝒅𝒅𝟐𝟐𝒓𝒓
𝒅𝒅𝒕𝒕𝟐𝟐 ∶=

𝒘𝒘𝟎𝟎
𝟐𝟐𝒅𝒅𝟐𝟐(. )
𝒅𝒅𝒓𝒓𝟐𝟐  (7) 

 
Finally it is necessary to introduce dimensionless coordinates representing the degrees of freedom for 
structure (yS), DVA (yE), and DN (yQ) as well the dimensionless excitation force fs, compare Eqn. (8). x0 is 
an arbitrarily chosen factor and used to normalize the physical coordinates. 

𝒚𝒚𝑺𝑺 ∶=
𝒙𝒙𝑺𝑺
𝒙𝒙𝟎𝟎

 𝒚𝒚𝑬𝑬 ∶=
𝒙𝒙𝑬𝑬
𝒙𝒙𝟎𝟎

 𝒚𝒚𝑸𝑸 ∶=
𝒙𝒙𝑸𝑸
𝒙𝒙𝟎𝟎

 𝒇𝒇𝑺𝑺 ∶=
𝑭𝑭𝑺𝑺

𝑳𝑳𝒘𝒘𝟎𝟎
𝟐𝟐𝒙𝒙𝟎𝟎

 (8) 

         
The resulting set of dimensionless equations of motion is summarized in Eqn. (9) – (11). It is worth 
mentioning that the number of constants is reduced from nine, compare Eqn. (1) – (3), down to six, if 
the problem is analysed in a dimensionless formulation. This is important, if optimization is used in the 
future to find an optimal set of parameter. 

𝒅𝒅𝟐𝟐𝒚𝒚𝑺𝑺
𝒅𝒅𝒓𝒓𝟐𝟐 + 𝟐𝟐𝟐𝟐(𝟏𝟏 + 𝒃𝒃)𝒅𝒅𝒚𝒚𝑺𝑺𝒅𝒅𝒓𝒓 − 𝟐𝟐𝟐𝟐𝒃𝒃𝒅𝒅𝒚𝒚𝑬𝑬𝒅𝒅𝒓𝒓 + 𝟐𝟐𝟐𝟐

𝒅𝒅𝒚𝒚𝑸𝑸
𝒅𝒅𝒓𝒓 + (𝟏𝟏 + 𝒏𝒏)𝒚𝒚𝑺𝑺 − 𝒏𝒏𝒚𝒚𝑬𝑬 = 𝒇𝒇𝑺𝑺 (9) 

𝒎𝒎𝒅𝒅𝟐𝟐𝒚𝒚𝑬𝑬
𝒅𝒅𝒓𝒓𝟐𝟐 − 𝟐𝟐𝟐𝟐𝒃𝒃𝒅𝒅𝒚𝒚𝑺𝑺𝒅𝒅𝒓𝒓 + 𝟐𝟐𝟐𝟐𝒃𝒃𝒅𝒅𝒚𝒚𝑬𝑬𝒅𝒅𝒓𝒓 − 𝟐𝟐𝟐𝟐

𝒅𝒅𝒚𝒚𝑸𝑸
𝒅𝒅𝒓𝒓 − 𝒏𝒏𝒚𝒚𝑺𝑺 + 𝒏𝒏𝒚𝒚𝑬𝑬 = 𝟎𝟎 (10) 
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𝒅𝒅𝒕𝒕 − 𝑻𝑻𝒅𝒅𝒅𝒅𝒅𝒅𝒕𝒕 − 𝑲𝑲𝑬𝑬𝒙𝒙𝑺𝑺 + 𝑲𝑲𝑬𝑬𝒙𝒙𝑬𝑬 = 𝟎𝟎 (2) 

𝑳𝑳𝒅𝒅
𝟐𝟐𝒅𝒅
𝒅𝒅𝒕𝒕𝟐𝟐 − 𝑻𝑻𝒅𝒅𝒙𝒙𝑺𝑺𝒅𝒅𝒕𝒕 + 𝑻𝑻𝒅𝒅𝒙𝒙𝑬𝑬𝒅𝒅𝒕𝒕 + 𝑹𝑹𝒅𝒅𝒅𝒅𝒅𝒅𝒕𝒕 = 𝟎𝟎 (3) 

 
2.2. Dimensionless formulation of system equation 
To reduce the complexity and to focus on the general performance principle, the equations of motions 
are transformed to a non-dimensional representation of the problem. For this reason, the 
abbreviations listed in Eqn. (4) have been introduced. 

𝒘𝒘𝟎𝟎
𝟐𝟐 ∶= 𝑲𝑲𝑺𝑺
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 (4) 

 
w0 is an angular frequency defined by the ratio of stiffness and mass of the vibrating structure. D is the 
dimensionless structural damping ratio and E is the dimensionless damping ratio of the DN. The latter 
is introduced as the ratio between electrical resistance and inductance normalized to w0. Furthermore, 
relative values for the remaining elements have been introduced, compare Eqn. (5). 

𝒃𝒃 ∶= 𝑩𝑩𝑬𝑬
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b is a relative viscosity obtained by normalizing the viscosity of the DVA-mount to the viscosity of the 
vibrating structure. g can be interpreted as a dimensionless force factor. However it represents a 
mechanical viscosity, given by T2/R, that is normalized by using the viscosity of the vibrating structure. 
m is the relative mass and n the stiffness ratio. To proceed it is also necessary to introduce the 
generalized displacement xQ as defined its time derivative, compare Eqn. (6) 
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Finally it is necessary to introduce dimensionless coordinates representing the degrees of freedom for 
structure (yS), DVA (yE), and DN (yQ) as well the dimensionless excitation force fs, compare Eqn. (8). x0 is 
an arbitrarily chosen factor and used to normalize the physical coordinates. 
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𝟐𝟐𝒙𝒙𝟎𝟎

 (8) 

         
The resulting set of dimensionless equations of motion is summarized in Eqn. (9) – (11). It is worth 
mentioning that the number of constants is reduced from nine, compare Eqn. (1) – (3), down to six, if 
the problem is analysed in a dimensionless formulation. This is important, if optimization is used in the 
future to find an optimal set of parameter. 
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2.2. Dimensionless formulation of system equation 
To reduce the complexity and to focus on the general performance principle, the equations of motions 
are transformed to a non-dimensional representation of the problem. For this reason, the 
abbreviations listed in Eqn. (4) have been introduced. 

𝒘𝒘𝟎𝟎
𝟐𝟐 ∶= 𝑲𝑲𝑺𝑺

𝑴𝑴𝑺𝑺
          𝟐𝟐𝟐𝟐𝒘𝒘𝟎𝟎 ∶=

𝑩𝑩𝑺𝑺
𝑴𝑴𝑺𝑺

 𝟐𝟐𝑬𝑬𝒘𝒘 ∶= 𝑹𝑹
𝑳𝑳𝒘𝒘𝟎𝟎

 (4) 

 
w0 is an angular frequency defined by the ratio of stiffness and mass of the vibrating structure. D is the 
dimensionless structural damping ratio and E is the dimensionless damping ratio of the DN. The latter 
is introduced as the ratio between electrical resistance and inductance normalized to w0. Furthermore, 
relative values for the remaining elements have been introduced, compare Eqn. (5). 

𝒃𝒃 ∶= 𝑩𝑩𝑬𝑬
𝑩𝑩𝑺𝑺

 𝒈𝒈 ∶= 𝑻𝑻𝟐𝟐
𝑹𝑹𝑩𝑩𝑺𝑺

 𝒎𝒎 ∶= 𝑴𝑴𝑬𝑬
𝑴𝑴𝑺𝑺

 𝒏𝒏 ∶= 𝑲𝑲𝑬𝑬
𝑲𝑲𝑺𝑺

 (5) 

 
b is a relative viscosity obtained by normalizing the viscosity of the DVA-mount to the viscosity of the 
vibrating structure. g can be interpreted as a dimensionless force factor. However it represents a 
mechanical viscosity, given by T2/R, that is normalized by using the viscosity of the vibrating structure. 
m is the relative mass and n the stiffness ratio. To proceed it is also necessary to introduce the 
generalized displacement xQ as defined its time derivative, compare Eqn. (6) 

𝒅𝒅𝒙𝒙𝑸𝑸
𝒅𝒅𝒕𝒕 ∶= (𝑻𝑻 𝑩𝑩𝑺𝑺)⁄ 𝒅𝒅𝒅𝒅
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Based on w0 the dimensionless time r can be introduced as well as the corresponding derivatives. These 
definitions are given in Eqn. (7)  

𝒓𝒓 ∶= 𝒘𝒘𝟎𝟎𝒕𝒕 
𝒅𝒅(. )
𝒅𝒅𝒕𝒕 = 𝒅𝒅(. )
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𝒅𝒅𝒕𝒕 ∶=

𝒘𝒘𝟎𝟎𝒅𝒅(. )
𝒅𝒅𝒓𝒓  

𝒅𝒅𝟐𝟐(. )
𝒅𝒅𝒕𝒕𝟐𝟐 = 𝒅𝒅𝟐𝟐(. )
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Finally it is necessary to introduce dimensionless coordinates representing the degrees of freedom for 
structure (yS), DVA (yE), and DN (yQ) as well the dimensionless excitation force fs, compare Eqn. (8). x0 is 
an arbitrarily chosen factor and used to normalize the physical coordinates. 
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The resulting set of dimensionless equations of motion is summarized in Eqn. (9) – (11). It is worth 
mentioning that the number of constants is reduced from nine, compare Eqn. (1) – (3), down to six, if 
the problem is analysed in a dimensionless formulation. This is important, if optimization is used in the 
future to find an optimal set of parameter. 
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𝒅𝒅𝒕𝒕 − 𝑻𝑻𝒅𝒅𝒅𝒅𝒅𝒅𝒕𝒕 − 𝑲𝑲𝑬𝑬𝒙𝒙𝑺𝑺 + 𝑲𝑲𝑬𝑬𝒙𝒙𝑬𝑬 = 𝟎𝟎 (2) 

𝑳𝑳𝒅𝒅
𝟐𝟐𝒅𝒅
𝒅𝒅𝒕𝒕𝟐𝟐 − 𝑻𝑻𝒅𝒅𝒙𝒙𝑺𝑺𝒅𝒅𝒕𝒕 + 𝑻𝑻𝒅𝒅𝒙𝒙𝑬𝑬𝒅𝒅𝒕𝒕 + 𝑹𝑹𝒅𝒅𝒅𝒅𝒅𝒅𝒕𝒕 = 𝟎𝟎 (3) 

 
2.2. Dimensionless formulation of system equation 
To reduce the complexity and to focus on the general performance principle, the equations of motions 
are transformed to a non-dimensional representation of the problem. For this reason, the 
abbreviations listed in Eqn. (4) have been introduced. 

𝒘𝒘𝟎𝟎
𝟐𝟐 ∶= 𝑲𝑲𝑺𝑺

𝑴𝑴𝑺𝑺
          𝟐𝟐𝟐𝟐𝒘𝒘𝟎𝟎 ∶=

𝑩𝑩𝑺𝑺
𝑴𝑴𝑺𝑺

 𝟐𝟐𝑬𝑬𝒘𝒘 ∶= 𝑹𝑹
𝑳𝑳𝒘𝒘𝟎𝟎

 (4) 

 
w0 is an angular frequency defined by the ratio of stiffness and mass of the vibrating structure. D is the 
dimensionless structural damping ratio and E is the dimensionless damping ratio of the DN. The latter 
is introduced as the ratio between electrical resistance and inductance normalized to w0. Furthermore, 
relative values for the remaining elements have been introduced, compare Eqn. (5). 

𝒃𝒃 ∶= 𝑩𝑩𝑬𝑬
𝑩𝑩𝑺𝑺

 𝒈𝒈 ∶= 𝑻𝑻𝟐𝟐
𝑹𝑹𝑩𝑩𝑺𝑺

 𝒎𝒎 ∶= 𝑴𝑴𝑬𝑬
𝑴𝑴𝑺𝑺

 𝒏𝒏 ∶= 𝑲𝑲𝑬𝑬
𝑲𝑲𝑺𝑺

 (5) 

 
b is a relative viscosity obtained by normalizing the viscosity of the DVA-mount to the viscosity of the 
vibrating structure. g can be interpreted as a dimensionless force factor. However it represents a 
mechanical viscosity, given by T2/R, that is normalized by using the viscosity of the vibrating structure. 
m is the relative mass and n the stiffness ratio. To proceed it is also necessary to introduce the 
generalized displacement xQ as defined its time derivative, compare Eqn. (6) 

𝒅𝒅𝒙𝒙𝑸𝑸
𝒅𝒅𝒕𝒕 ∶= (𝑻𝑻 𝑩𝑩𝑺𝑺)⁄ 𝒅𝒅𝒅𝒅

𝒅𝒅𝒕𝒕  (6) 

 
Based on w0 the dimensionless time r can be introduced as well as the corresponding derivatives. These 
definitions are given in Eqn. (7)  

𝒓𝒓 ∶= 𝒘𝒘𝟎𝟎𝒕𝒕 
𝒅𝒅(. )
𝒅𝒅𝒕𝒕 = 𝒅𝒅(. )

𝒅𝒅𝒓𝒓  𝒅𝒅𝒓𝒓
𝒅𝒅𝒕𝒕 ∶=

𝒘𝒘𝟎𝟎𝒅𝒅(. )
𝒅𝒅𝒓𝒓  

𝒅𝒅𝟐𝟐(. )
𝒅𝒅𝒕𝒕𝟐𝟐 = 𝒅𝒅𝟐𝟐(. )

𝒅𝒅𝒓𝒓𝟐𝟐  
𝒅𝒅𝟐𝟐𝒓𝒓
𝒅𝒅𝒕𝒕𝟐𝟐 ∶=

𝒘𝒘𝟎𝟎
𝟐𝟐𝒅𝒅𝟐𝟐(. )
𝒅𝒅𝒓𝒓𝟐𝟐  (7) 

 
Finally it is necessary to introduce dimensionless coordinates representing the degrees of freedom for 
structure (yS), DVA (yE), and DN (yQ) as well the dimensionless excitation force fs, compare Eqn. (8). x0 is 
an arbitrarily chosen factor and used to normalize the physical coordinates. 

𝒚𝒚𝑺𝑺 ∶=
𝒙𝒙𝑺𝑺
𝒙𝒙𝟎𝟎

 𝒚𝒚𝑬𝑬 ∶=
𝒙𝒙𝑬𝑬
𝒙𝒙𝟎𝟎

 𝒚𝒚𝑸𝑸 ∶=
𝒙𝒙𝑸𝑸
𝒙𝒙𝟎𝟎

 𝒇𝒇𝑺𝑺 ∶=
𝑭𝑭𝑺𝑺

𝑳𝑳𝒘𝒘𝟎𝟎
𝟐𝟐𝒙𝒙𝟎𝟎

 (8) 

         
The resulting set of dimensionless equations of motion is summarized in Eqn. (9) – (11). It is worth 
mentioning that the number of constants is reduced from nine, compare Eqn. (1) – (3), down to six, if 
the problem is analysed in a dimensionless formulation. This is important, if optimization is used in the 
future to find an optimal set of parameter. 

𝒅𝒅𝟐𝟐𝒚𝒚𝑺𝑺
𝒅𝒅𝒓𝒓𝟐𝟐 + 𝟐𝟐𝟐𝟐(𝟏𝟏 + 𝒃𝒃)𝒅𝒅𝒚𝒚𝑺𝑺𝒅𝒅𝒓𝒓 − 𝟐𝟐𝟐𝟐𝒃𝒃𝒅𝒅𝒚𝒚𝑬𝑬𝒅𝒅𝒓𝒓 + 𝟐𝟐𝟐𝟐

𝒅𝒅𝒚𝒚𝑸𝑸
𝒅𝒅𝒓𝒓 + (𝟏𝟏 + 𝒏𝒏)𝒚𝒚𝑺𝑺 − 𝒏𝒏𝒚𝒚𝑬𝑬 = 𝒇𝒇𝑺𝑺 (9) 

𝒎𝒎𝒅𝒅𝟐𝟐𝒚𝒚𝑬𝑬
𝒅𝒅𝒓𝒓𝟐𝟐 − 𝟐𝟐𝟐𝟐𝒃𝒃𝒅𝒅𝒚𝒚𝑺𝑺𝒅𝒅𝒓𝒓 + 𝟐𝟐𝟐𝟐𝒃𝒃𝒅𝒅𝒚𝒚𝑬𝑬𝒅𝒅𝒓𝒓 − 𝟐𝟐𝟐𝟐

𝒅𝒅𝒚𝒚𝑸𝑸
𝒅𝒅𝒓𝒓 − 𝒏𝒏𝒚𝒚𝑺𝑺 + 𝒏𝒏𝒚𝒚𝑬𝑬 = 𝟎𝟎 (10) 
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𝑴𝑴𝑺𝑺
𝒅𝒅𝟐𝟐𝒙𝒙𝑬𝑬
𝒅𝒅𝒕𝒕𝟐𝟐 − 𝑩𝑩𝑬𝑬

𝒅𝒅𝒙𝒙𝑺𝑺
𝒅𝒅𝒕𝒕 + 𝑩𝑩𝑬𝑬

𝒅𝒅𝒙𝒙𝑬𝑬
𝒅𝒅𝒕𝒕 − 𝑻𝑻𝒅𝒅𝒅𝒅𝒅𝒅𝒕𝒕 − 𝑲𝑲𝑬𝑬𝒙𝒙𝑺𝑺 + 𝑲𝑲𝑬𝑬𝒙𝒙𝑬𝑬 = 𝟎𝟎 (2) 

𝑳𝑳𝒅𝒅
𝟐𝟐𝒅𝒅
𝒅𝒅𝒕𝒕𝟐𝟐 − 𝑻𝑻𝒅𝒅𝒙𝒙𝑺𝑺𝒅𝒅𝒕𝒕 + 𝑻𝑻𝒅𝒅𝒙𝒙𝑬𝑬𝒅𝒅𝒕𝒕 + 𝑹𝑹𝒅𝒅𝒅𝒅𝒅𝒅𝒕𝒕 = 𝟎𝟎 (3) 

 
2.2. Dimensionless formulation of system equation 
To reduce the complexity and to focus on the general performance principle, the equations of motions 
are transformed to a non-dimensional representation of the problem. For this reason, the 
abbreviations listed in Eqn. (4) have been introduced. 

𝒘𝒘𝟎𝟎
𝟐𝟐 ∶= 𝑲𝑲𝑺𝑺

𝑴𝑴𝑺𝑺
          𝟐𝟐𝟐𝟐𝒘𝒘𝟎𝟎 ∶=

𝑩𝑩𝑺𝑺
𝑴𝑴𝑺𝑺

 𝟐𝟐𝑬𝑬𝒘𝒘 ∶= 𝑹𝑹
𝑳𝑳𝒘𝒘𝟎𝟎

 (4) 

 
w0 is an angular frequency defined by the ratio of stiffness and mass of the vibrating structure. D is the 
dimensionless structural damping ratio and E is the dimensionless damping ratio of the DN. The latter 
is introduced as the ratio between electrical resistance and inductance normalized to w0. Furthermore, 
relative values for the remaining elements have been introduced, compare Eqn. (5). 

𝒃𝒃 ∶= 𝑩𝑩𝑬𝑬
𝑩𝑩𝑺𝑺

 𝒈𝒈 ∶= 𝑻𝑻𝟐𝟐
𝑹𝑹𝑩𝑩𝑺𝑺

 𝒎𝒎 ∶= 𝑴𝑴𝑬𝑬
𝑴𝑴𝑺𝑺

 𝒏𝒏 ∶= 𝑲𝑲𝑬𝑬
𝑲𝑲𝑺𝑺

 (5) 

 
b is a relative viscosity obtained by normalizing the viscosity of the DVA-mount to the viscosity of the 
vibrating structure. g can be interpreted as a dimensionless force factor. However it represents a 
mechanical viscosity, given by T2/R, that is normalized by using the viscosity of the vibrating structure. 
m is the relative mass and n the stiffness ratio. To proceed it is also necessary to introduce the 
generalized displacement xQ as defined its time derivative, compare Eqn. (6) 

𝒅𝒅𝒙𝒙𝑸𝑸
𝒅𝒅𝒕𝒕 ∶= (𝑻𝑻 𝑩𝑩𝑺𝑺)⁄ 𝒅𝒅𝒅𝒅

𝒅𝒅𝒕𝒕  (6) 

 
Based on w0 the dimensionless time r can be introduced as well as the corresponding derivatives. These 
definitions are given in Eqn. (7)  

𝒓𝒓 ∶= 𝒘𝒘𝟎𝟎𝒕𝒕 
𝒅𝒅(. )
𝒅𝒅𝒕𝒕 = 𝒅𝒅(. )

𝒅𝒅𝒓𝒓  𝒅𝒅𝒓𝒓
𝒅𝒅𝒕𝒕 ∶=

𝒘𝒘𝟎𝟎𝒅𝒅(. )
𝒅𝒅𝒓𝒓  

𝒅𝒅𝟐𝟐(. )
𝒅𝒅𝒕𝒕𝟐𝟐 = 𝒅𝒅𝟐𝟐(. )

𝒅𝒅𝒓𝒓𝟐𝟐  
𝒅𝒅𝟐𝟐𝒓𝒓
𝒅𝒅𝒕𝒕𝟐𝟐 ∶=

𝒘𝒘𝟎𝟎
𝟐𝟐𝒅𝒅𝟐𝟐(. )
𝒅𝒅𝒓𝒓𝟐𝟐  (7) 

 
Finally it is necessary to introduce dimensionless coordinates representing the degrees of freedom for 
structure (yS), DVA (yE), and DN (yQ) as well the dimensionless excitation force fs, compare Eqn. (8). x0 is 
an arbitrarily chosen factor and used to normalize the physical coordinates. 

𝒚𝒚𝑺𝑺 ∶=
𝒙𝒙𝑺𝑺
𝒙𝒙𝟎𝟎

 𝒚𝒚𝑬𝑬 ∶=
𝒙𝒙𝑬𝑬
𝒙𝒙𝟎𝟎

 𝒚𝒚𝑸𝑸 ∶=
𝒙𝒙𝑸𝑸
𝒙𝒙𝟎𝟎

 𝒇𝒇𝑺𝑺 ∶=
𝑭𝑭𝑺𝑺

𝑳𝑳𝒘𝒘𝟎𝟎
𝟐𝟐𝒙𝒙𝟎𝟎

 (8) 

         
The resulting set of dimensionless equations of motion is summarized in Eqn. (9) – (11). It is worth 
mentioning that the number of constants is reduced from nine, compare Eqn. (1) – (3), down to six, if 
the problem is analysed in a dimensionless formulation. This is important, if optimization is used in the 
future to find an optimal set of parameter. 

𝒅𝒅𝟐𝟐𝒚𝒚𝑺𝑺
𝒅𝒅𝒓𝒓𝟐𝟐 + 𝟐𝟐𝟐𝟐(𝟏𝟏 + 𝒃𝒃)𝒅𝒅𝒚𝒚𝑺𝑺𝒅𝒅𝒓𝒓 − 𝟐𝟐𝟐𝟐𝒃𝒃𝒅𝒅𝒚𝒚𝑬𝑬𝒅𝒅𝒓𝒓 + 𝟐𝟐𝟐𝟐

𝒅𝒅𝒚𝒚𝑸𝑸
𝒅𝒅𝒓𝒓 + (𝟏𝟏 + 𝒏𝒏)𝒚𝒚𝑺𝑺 − 𝒏𝒏𝒚𝒚𝑬𝑬 = 𝒇𝒇𝑺𝑺 (9) 

𝒎𝒎𝒅𝒅𝟐𝟐𝒚𝒚𝑬𝑬
𝒅𝒅𝒓𝒓𝟐𝟐 − 𝟐𝟐𝟐𝟐𝒃𝒃𝒅𝒅𝒚𝒚𝑺𝑺𝒅𝒅𝒓𝒓 + 𝟐𝟐𝟐𝟐𝒃𝒃𝒅𝒅𝒚𝒚𝑬𝑬𝒅𝒅𝒓𝒓 − 𝟐𝟐𝟐𝟐

𝒅𝒅𝒚𝒚𝑸𝑸
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𝒅𝒅𝟐𝟐𝒚𝒚𝑸𝑸
𝒅𝒅𝒓𝒓𝟐𝟐 − 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝒅𝒅𝒚𝒚𝑺𝑺𝒅𝒅𝒓𝒓 + 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝒅𝒅𝒚𝒚𝟐𝟐𝒅𝒅𝒓𝒓 − 𝟐𝟐𝟐𝟐𝟐𝟐

𝒅𝒅𝒚𝒚𝑸𝑸
𝒅𝒅𝒓𝒓 = 𝟎𝟎 (11) 

 
Assuming time-harmonic fluctuations of all quantities according to the normalized frequency f given by 
the ratio of angular excitation frequency W and w0, compare Eqn. (12) 

𝒇𝒇 ∶= 𝑾𝑾
𝟐𝟐𝟎𝟎

 (12) 

 
the dimensionless complex compliance is given by Eqn. (13) 

{𝑪𝑪} = (−𝒇𝒇𝟐𝟐{𝑴𝑴} + 𝒋𝒋𝒇𝒇{𝑩𝑩} + {𝑲𝑲})−𝟏𝟏 (13) 
 
where {M} is the dimensionless mass matrix, {B} is the dimensionless damping matrix, and {K} is the 
dimensionless stiffness matrix as defined in Eqn. (14) – (16).    

{𝑴𝑴} = [[𝟏𝟏,𝟎𝟎,𝟎𝟎]; [𝟎𝟎,𝒎𝒎,𝟎𝟎]; [𝟎𝟎,𝟎𝟎,𝟏𝟏]] (14) 
{𝑩𝑩} = [[𝟐𝟐𝟐𝟐(𝟏𝟏 + 𝒃𝒃),−𝟐𝟐𝟐𝟐𝒃𝒃,𝟐𝟐𝟐𝟐]; [−𝟐𝟐𝟐𝟐𝒃𝒃,𝟐𝟐𝟐𝟐𝒃𝒃,−𝟐𝟐𝟐𝟐]; [−𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐,𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐,𝟐𝟐𝟐𝟐𝟐𝟐]] (15) 

{𝑲𝑲}=[[𝟏𝟏 + 𝒏𝒏,−𝒏𝒏,𝟎𝟎]; [−𝒏𝒏,𝒏𝒏,𝟎𝟎]; [𝟎𝟎,𝟎𝟎,𝟎𝟎]] (16) 
 
The dynamic behaviour of the system is described by nine complex and dimensionless frequency 
response functions Cij. The index i represents the response of the i-th coordinate due to excitation at 
the j-th position. In order to study the system response it is possible to introduce a logarithmic measure 
as defined in Eqn. (17). 

𝑯𝑯𝒊𝒊𝒋𝒋∶= 𝟐𝟐𝟎𝟎𝒍𝒍𝒍𝒍𝟐𝟐𝟏𝟏𝟎𝟎(|𝑪𝑪𝒊𝒊𝒋𝒋|) (17) 
 

3. NUMERICAL INVESTIGATION OF NOISE CONTROL POTENTIAL 
 
In order to analyze the noise control potential of an EMRA a specific set of parameter listed in Tab.1 
have been defined. It represents a structure with low structural damping and a DVA with a nearly elastic 
mount. Thus, the relevant dissipation is associated with the DN. The value of Ew that can be interpreted 
as the normalized decay constant of electrical circuit as well as the values for g – the normalized force 
factor – have been defined according to small common-of-the-shelf vibration exciter known from flat 
panel speaker systems. For this reason the numerical example represents a system similar to a 
composite lightweight structure, as used for aircraft interior design, with point force excitation in 
combination with a semi-active noise reduction treatment based on an EMRA. The simulation results 
are shown in Fig. 2, where H11 represents the magnitude response of the structure due to an excitation 
acting on the structure, H12 represents the magnitude response of the DVA due to an excitation acting 
on the structure, and H13 represents the magnitude response of the DN due to an excitation acting on 
the structure.     
 

Parameter Symbol Value 

Damping ratio of structure D 0,005 
Relative mass  m 0,100 

Relative damping b 0,100 
Relative stiffness n 0,100 
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𝑴𝑴𝑺𝑺
𝒅𝒅𝟐𝟐𝒙𝒙𝑬𝑬
𝒅𝒅𝒕𝒕𝟐𝟐 − 𝑩𝑩𝑬𝑬

𝒅𝒅𝒙𝒙𝑺𝑺
𝒅𝒅𝒕𝒕 + 𝑩𝑩𝑬𝑬

𝒅𝒅𝒙𝒙𝑬𝑬
𝒅𝒅𝒕𝒕 − 𝑻𝑻𝒅𝒅𝒅𝒅𝒅𝒅𝒕𝒕 − 𝑲𝑲𝑬𝑬𝒙𝒙𝑺𝑺 + 𝑲𝑲𝑬𝑬𝒙𝒙𝑬𝑬 = 𝟎𝟎 (2) 

𝑳𝑳𝒅𝒅
𝟐𝟐𝒅𝒅
𝒅𝒅𝒕𝒕𝟐𝟐 − 𝑻𝑻𝒅𝒅𝒙𝒙𝑺𝑺𝒅𝒅𝒕𝒕 + 𝑻𝑻𝒅𝒅𝒙𝒙𝑬𝑬𝒅𝒅𝒕𝒕 + 𝑹𝑹𝒅𝒅𝒅𝒅𝒅𝒅𝒕𝒕 = 𝟎𝟎 (3) 

 
2.2. Dimensionless formulation of system equation 
To reduce the complexity and to focus on the general performance principle, the equations of motions 
are transformed to a non-dimensional representation of the problem. For this reason, the 
abbreviations listed in Eqn. (4) have been introduced. 

𝒘𝒘𝟎𝟎
𝟐𝟐 ∶= 𝑲𝑲𝑺𝑺

𝑴𝑴𝑺𝑺
          𝟐𝟐𝟐𝟐𝒘𝒘𝟎𝟎 ∶=

𝑩𝑩𝑺𝑺
𝑴𝑴𝑺𝑺

 𝟐𝟐𝑬𝑬𝒘𝒘 ∶= 𝑹𝑹
𝑳𝑳𝒘𝒘𝟎𝟎

 (4) 

 
w0 is an angular frequency defined by the ratio of stiffness and mass of the vibrating structure. D is the 
dimensionless structural damping ratio and E is the dimensionless damping ratio of the DN. The latter 
is introduced as the ratio between electrical resistance and inductance normalized to w0. Furthermore, 
relative values for the remaining elements have been introduced, compare Eqn. (5). 

𝒃𝒃 ∶= 𝑩𝑩𝑬𝑬
𝑩𝑩𝑺𝑺

 𝒈𝒈 ∶= 𝑻𝑻𝟐𝟐
𝑹𝑹𝑩𝑩𝑺𝑺

 𝒎𝒎 ∶= 𝑴𝑴𝑬𝑬
𝑴𝑴𝑺𝑺

 𝒏𝒏 ∶= 𝑲𝑲𝑬𝑬
𝑲𝑲𝑺𝑺

 (5) 

 
b is a relative viscosity obtained by normalizing the viscosity of the DVA-mount to the viscosity of the 
vibrating structure. g can be interpreted as a dimensionless force factor. However it represents a 
mechanical viscosity, given by T2/R, that is normalized by using the viscosity of the vibrating structure. 
m is the relative mass and n the stiffness ratio. To proceed it is also necessary to introduce the 
generalized displacement xQ as defined its time derivative, compare Eqn. (6) 

𝒅𝒅𝒙𝒙𝑸𝑸
𝒅𝒅𝒕𝒕 ∶= (𝑻𝑻 𝑩𝑩𝑺𝑺)⁄ 𝒅𝒅𝒅𝒅

𝒅𝒅𝒕𝒕  (6) 

 
Based on w0 the dimensionless time r can be introduced as well as the corresponding derivatives. These 
definitions are given in Eqn. (7)  

𝒓𝒓 ∶= 𝒘𝒘𝟎𝟎𝒕𝒕 
𝒅𝒅(. )
𝒅𝒅𝒕𝒕 = 𝒅𝒅(. )

𝒅𝒅𝒓𝒓  𝒅𝒅𝒓𝒓
𝒅𝒅𝒕𝒕 ∶=

𝒘𝒘𝟎𝟎𝒅𝒅(. )
𝒅𝒅𝒓𝒓  

𝒅𝒅𝟐𝟐(. )
𝒅𝒅𝒕𝒕𝟐𝟐 = 𝒅𝒅𝟐𝟐(. )

𝒅𝒅𝒓𝒓𝟐𝟐  
𝒅𝒅𝟐𝟐𝒓𝒓
𝒅𝒅𝒕𝒕𝟐𝟐 ∶=

𝒘𝒘𝟎𝟎
𝟐𝟐𝒅𝒅𝟐𝟐(. )
𝒅𝒅𝒓𝒓𝟐𝟐  (7) 

 
Finally it is necessary to introduce dimensionless coordinates representing the degrees of freedom for 
structure (yS), DVA (yE), and DN (yQ) as well the dimensionless excitation force fs, compare Eqn. (8). x0 is 
an arbitrarily chosen factor and used to normalize the physical coordinates. 

𝒚𝒚𝑺𝑺 ∶=
𝒙𝒙𝑺𝑺
𝒙𝒙𝟎𝟎

 𝒚𝒚𝑬𝑬 ∶=
𝒙𝒙𝑬𝑬
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 (8) 

         
The resulting set of dimensionless equations of motion is summarized in Eqn. (9) – (11). It is worth 
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the problem is analysed in a dimensionless formulation. This is important, if optimization is used in the 
future to find an optimal set of parameter. 
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𝒅𝒅𝒓𝒓𝟐𝟐 + 𝟐𝟐𝟐𝟐(𝟏𝟏 + 𝒃𝒃)𝒅𝒅𝒚𝒚𝑺𝑺𝒅𝒅𝒓𝒓 − 𝟐𝟐𝟐𝟐𝒃𝒃𝒅𝒅𝒚𝒚𝑬𝑬𝒅𝒅𝒓𝒓 + 𝟐𝟐𝟐𝟐

𝒅𝒅𝒚𝒚𝑸𝑸
𝒅𝒅𝒓𝒓 + (𝟏𝟏 + 𝒏𝒏)𝒚𝒚𝑺𝑺 − 𝒏𝒏𝒚𝒚𝑬𝑬 = 𝒇𝒇𝑺𝑺 (9) 

𝒎𝒎𝒅𝒅𝟐𝟐𝒚𝒚𝑬𝑬
𝒅𝒅𝒓𝒓𝟐𝟐 − 𝟐𝟐𝟐𝟐𝒃𝒃𝒅𝒅𝒚𝒚𝑺𝑺𝒅𝒅𝒓𝒓 + 𝟐𝟐𝟐𝟐𝒃𝒃𝒅𝒅𝒚𝒚𝑬𝑬𝒅𝒅𝒓𝒓 − 𝟐𝟐𝟐𝟐

𝒅𝒅𝒚𝒚𝑸𝑸
𝒅𝒅𝒓𝒓 − 𝒏𝒏𝒚𝒚𝑺𝑺 + 𝒏𝒏𝒚𝒚𝑬𝑬 = 𝟎𝟎 (10) 
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Fig. 2: Normalized magnitudes of structure (left), absorber (mid-
dle), and electric circuit (right)

As indicated by the last row in Tab. 1 and shown in Fig. 2 
different vales of the normalized force factor g have been used 
to simulate the frequency response of the electro-mechanical 
system shown in Fig. 1. According to the definition of g, com-
pare Eqn. (5), two interpretations are possible for this proce-
dure
•	 Interpretation 1: A variation of g corresponds to a pro-

portional variation of T and can be seen as an adaption of 
the DVA. Compared to active control systems this could 
be understood as an adaption of the actuator system in 
order to generate an effective actuation force. 

•	 Interpretation 2: A variation of g corresponds to an in-
direct proportional variation of R and can be seen as an 
adaption of the DN. Compared to active control systems 
this could be understood as an adaption of the control 
schema without changing the actuation system. This re-
fers to the scaling problem outlined in section 1, because 
the same DVA is used, but the performance of the DN is 
scaled (better adapted) to obtain an effective dissipation.

Naturally it is also possible to analyze a variation of the nor-
malized decay constant Ew that represents the ratio of R and 
L. However, interpretation 1 would have been impossible fo-
llowing this approach.

The situation without DN corresponds to the value g = 0. The 
resonance frequencies are to be found at fR1 = 0,86 and fR2 = 
1,17. The anti-resonance is (in agreement with the theory of 
dynamic absorbers) to be found at fAR = 1,00. The control profit 
at the resonance frequencies increased with an increase of g, 
compare Fig. 2 (left) and Fig. 2 (middle). At the same time the 
normalized electric charge in the DN increases too as shown 
in Fig. 2 (right). Furthermore the effect of neutralizing the ex-
citation decreases, if g increases. The results proof that an op-
timal value for g could be found between g = 3,5 and g = 4,5. 
Further increase of the normalized force factor would result in 
a strongly coupled system and an increase of the system re-
sponse at fAR. 

                          (12)

the dimensionless complex compliance is given by Eqn. (13)

         (13)

where {M} is the dimensionless mass matrix, {B} is the dimen-
sionless damping matrix, and {K} is the dimensionless stiffness 
matrix as defined in Eqn. (14) – (16).  

          (14)

              (15)

          (16)

The dynamic behaviour of the system is described by nine 
complex and dimensionless frequency response functions Cij. 
The index i represents the response of the i-th coordinate due 
to excitation at the j-th position. In order to study the system 
response it is possible to introduce a logarithmic measure as 
defined in Eqn. (17).

         (17)

3. NUMERICAL INVESTIGATION OF NOISE 
CONTROL POTENTIAL

In order to analyze the noise control potential of an EMRA a 
specific set of parameter listed in Tab.1 have been defined. It 
represents a structure with low structural damping and a DVA 
with a nearly elastic mount. Thus, the relevant dissipation is 
associated with the DN. The value of Ew that can be interpre-
ted as the normalized decay constant of electrical circuit as 
well as the values for g – the normalized force factor – have 
been defined according to small common-of-the-shelf vibra-
tion exciter known from flat panel speaker systems. For this 
reason the numerical example represents a system similar to 
a composite lightweight structure, as used for aircraft interior 
design, with point force excitation in combination with a se-
mi-active noise reduction treatment based on an EMRA. The 
simulation results are shown in Fig. 2, where H11 represents 
the magnitude response of the structure due to an excitation 
acting on the structure, H12 represents the magnitude respon-
se of the DVA due to an excitation acting on the structure, and 
H13 represents the magnitude response of the DN due to an 
excitation acting on the structure.  

Tab. 1: Parameter used to describe the system dynamics
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𝒅𝒅𝟐𝟐𝒚𝒚𝑸𝑸
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𝒅𝒅𝒚𝒚𝑸𝑸
𝒅𝒅𝒓𝒓 = 𝟎𝟎 (11) 

 
Assuming time-harmonic fluctuations of all quantities according to the normalized frequency f given by 
the ratio of angular excitation frequency W and w0, compare Eqn. (12) 

𝒇𝒇 ∶= 𝑾𝑾
𝟐𝟐𝟎𝟎

 (12) 

 
the dimensionless complex compliance is given by Eqn. (13) 

{𝑪𝑪} = (−𝒇𝒇𝟐𝟐{𝑴𝑴} + 𝒋𝒋𝒇𝒇{𝑩𝑩} + {𝑲𝑲})−𝟏𝟏 (13) 
 
where {M} is the dimensionless mass matrix, {B} is the dimensionless damping matrix, and {K} is the 
dimensionless stiffness matrix as defined in Eqn. (14) – (16).    

{𝑴𝑴} = [[𝟏𝟏,𝟎𝟎,𝟎𝟎]; [𝟎𝟎,𝒎𝒎,𝟎𝟎]; [𝟎𝟎,𝟎𝟎,𝟏𝟏]] (14) 
{𝑩𝑩} = [[𝟐𝟐𝟐𝟐(𝟏𝟏 + 𝒃𝒃),−𝟐𝟐𝟐𝟐𝒃𝒃,𝟐𝟐𝟐𝟐]; [−𝟐𝟐𝟐𝟐𝒃𝒃,𝟐𝟐𝟐𝟐𝒃𝒃,−𝟐𝟐𝟐𝟐]; [−𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐,𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐,𝟐𝟐𝟐𝟐𝟐𝟐]] (15) 

{𝑲𝑲}=[[𝟏𝟏 + 𝒏𝒏,−𝒏𝒏,𝟎𝟎]; [−𝒏𝒏,𝒏𝒏,𝟎𝟎]; [𝟎𝟎,𝟎𝟎,𝟎𝟎]] (16) 
 
The dynamic behaviour of the system is described by nine complex and dimensionless frequency 
response functions Cij. The index i represents the response of the i-th coordinate due to excitation at 
the j-th position. In order to study the system response it is possible to introduce a logarithmic measure 
as defined in Eqn. (17). 

𝑯𝑯𝒊𝒊𝒋𝒋∶= 𝟐𝟐𝟎𝟎𝒍𝒍𝒍𝒍𝟐𝟐𝟏𝟏𝟎𝟎(|𝑪𝑪𝒊𝒊𝒋𝒋|) (17) 
 

3. NUMERICAL INVESTIGATION OF NOISE CONTROL POTENTIAL 
 
In order to analyze the noise control potential of an EMRA a specific set of parameter listed in Tab.1 
have been defined. It represents a structure with low structural damping and a DVA with a nearly elastic 
mount. Thus, the relevant dissipation is associated with the DN. The value of Ew that can be interpreted 
as the normalized decay constant of electrical circuit as well as the values for g – the normalized force 
factor – have been defined according to small common-of-the-shelf vibration exciter known from flat 
panel speaker systems. For this reason the numerical example represents a system similar to a 
composite lightweight structure, as used for aircraft interior design, with point force excitation in 
combination with a semi-active noise reduction treatment based on an EMRA. The simulation results 
are shown in Fig. 2, where H11 represents the magnitude response of the structure due to an excitation 
acting on the structure, H12 represents the magnitude response of the DVA due to an excitation acting 
on the structure, and H13 represents the magnitude response of the DN due to an excitation acting on 
the structure.     
 

Parameter Symbol Value 

Damping ratio of structure D 0,005 
Relative mass  m 0,100 

Relative damping b 0,100 
Relative stiffness n 0,100 
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the j-th position. In order to study the system response it is possible to introduce a logarithmic measure 
as defined in Eqn. (17). 
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mount. Thus, the relevant dissipation is associated with the DN. The value of Ew that can be interpreted 
as the normalized decay constant of electrical circuit as well as the values for g – the normalized force 
factor – have been defined according to small common-of-the-shelf vibration exciter known from flat 
panel speaker systems. For this reason the numerical example represents a system similar to a 
composite lightweight structure, as used for aircraft interior design, with point force excitation in 
combination with a semi-active noise reduction treatment based on an EMRA. The simulation results 
are shown in Fig. 2, where H11 represents the magnitude response of the structure due to an excitation 
acting on the structure, H12 represents the magnitude response of the DVA due to an excitation acting 
on the structure, and H13 represents the magnitude response of the DN due to an excitation acting on 
the structure.     
 

Parameter Symbol Value 

Damping ratio of structure D 0,005 
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Relative damping b 0,100 
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𝒇𝒇 ∶= 𝑾𝑾
𝟐𝟐𝟎𝟎

 (12) 

 
the dimensionless complex compliance is given by Eqn. (13) 

{𝑪𝑪} = (−𝒇𝒇𝟐𝟐{𝑴𝑴} + 𝒋𝒋𝒇𝒇{𝑩𝑩} + {𝑲𝑲})−𝟏𝟏 (13) 
 
where {M} is the dimensionless mass matrix, {B} is the dimensionless damping matrix, and {K} is the 
dimensionless stiffness matrix as defined in Eqn. (14) – (16).    

{𝑴𝑴} = [[𝟏𝟏,𝟎𝟎,𝟎𝟎]; [𝟎𝟎,𝒎𝒎,𝟎𝟎]; [𝟎𝟎,𝟎𝟎,𝟏𝟏]] (14) 
{𝑩𝑩} = [[𝟐𝟐𝟐𝟐(𝟏𝟏 + 𝒃𝒃),−𝟐𝟐𝟐𝟐𝒃𝒃,𝟐𝟐𝟐𝟐]; [−𝟐𝟐𝟐𝟐𝒃𝒃,𝟐𝟐𝟐𝟐𝒃𝒃,−𝟐𝟐𝟐𝟐]; [−𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐,𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐,𝟐𝟐𝟐𝟐𝟐𝟐]] (15) 

{𝑲𝑲}=[[𝟏𝟏 + 𝒏𝒏,−𝒏𝒏,𝟎𝟎]; [−𝒏𝒏,𝒏𝒏,𝟎𝟎]; [𝟎𝟎,𝟎𝟎,𝟎𝟎]] (16) 
 
The dynamic behaviour of the system is described by nine complex and dimensionless frequency 
response functions Cij. The index i represents the response of the i-th coordinate due to excitation at 
the j-th position. In order to study the system response it is possible to introduce a logarithmic measure 
as defined in Eqn. (17). 

𝑯𝑯𝒊𝒊𝒋𝒋∶= 𝟐𝟐𝟎𝟎𝒍𝒍𝒍𝒍𝟐𝟐𝟏𝟏𝟎𝟎(|𝑪𝑪𝒊𝒊𝒋𝒋|) (17) 
 

3. NUMERICAL INVESTIGATION OF NOISE CONTROL POTENTIAL 
 
In order to analyze the noise control potential of an EMRA a specific set of parameter listed in Tab.1 
have been defined. It represents a structure with low structural damping and a DVA with a nearly elastic 
mount. Thus, the relevant dissipation is associated with the DN. The value of Ew that can be interpreted 
as the normalized decay constant of electrical circuit as well as the values for g – the normalized force 
factor – have been defined according to small common-of-the-shelf vibration exciter known from flat 
panel speaker systems. For this reason the numerical example represents a system similar to a 
composite lightweight structure, as used for aircraft interior design, with point force excitation in 
combination with a semi-active noise reduction treatment based on an EMRA. The simulation results 
are shown in Fig. 2, where H11 represents the magnitude response of the structure due to an excitation 
acting on the structure, H12 represents the magnitude response of the DVA due to an excitation acting 
on the structure, and H13 represents the magnitude response of the DN due to an excitation acting on 
the structure.     
 

Parameter Symbol Value 

Damping ratio of structure D 0,005 
Relative mass  m 0,100 

Relative damping b 0,100 
Relative stiffness n 0,100 
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Parameter Symbol Value

Damping ratio of structure D 0,005

Relative mass m 0,100

Relative damping b 0,100

Relative stiffness n 0,100

Normalized decay constant of electrical circuit Ew 456,9

Normalized force factor g [0; 0,5; 1.5; 2.5; 3.5; 4.5]
Tab. 1: Parameter used to describe the system dynamics

Fig. 2: Normalized magnitudes of structure (left), absorber (middle), and electric circuit (right)

As indicated by the last row in Tab. 1 and shown in Fig. 2 different vales of the normalized force

factor g have been used to simulate the frequency response of the electro-mechanical system shown

in Fig. 1. According to the definition of g, compare Eqn. (5), two interpretations are possible for this

procedure

 Interpretation 1: A variation of g corresponds to a proportional variation of T and can be seen as

an adaption of the DVA. Compared to active control  systems this could be understood as an

adaption of the actuator system in order to generate an effective actuation force. 

 Interpretation 2: A variation of g corresponds to an indirect proportional variation of R and can

be seen as an adaption of the DN. Compared to active control systems this could be understood

as an adaption of the control schema without changing the actuation system. This refers to the

scaling problem outlined in section 1, because the same DVA is used, but the performance of the

DN is scaled (better adapted) to obtain an effective dissipation.

Naturally  it  is  also  possible  to  analyze  a  variation  of  the  normalized  decay  constant  Ew that

represents the ratio of R and L. However, interpretation 1 would have been impossible following this

approach.

The situation without DN corresponds to the value g = 0. The resonance frequencies are to be found

at fR1 = 0,86 and fR2 = 1,17. The anti-resonance is (in agreement the theory of dynamic absorbers) to

be found at fAR = 1,00. The control profit at the resonance frequencies increased with an increase of

g, compare Fig. 2 (left) and Fig. 2 (middle). At the same time the normalized electric charge in the DN

increases  too  as  shown  in  Fig.  2  (right).  Furthermore  the  effect  of  neutralizing  the  excitation

decreases, if g increases. The results proof that an optimal value for g could be found between g = 3,5

and g = 4,5. Further increase of the normalized force factor would result in a strongly coupled system

and an increase of the system response at fAR. 
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semi-active control based on EMRA also allows a scalability 
because several single EMRA can be applied – without cross 
coupling – to increase the control profit. This benefit results 
from the fact that the approach is based on energy dissipation 
and not on destructive interference as known from active noi-
se control approaches.

Future work will be focused on numerical as well as on 
theoretical studies in order to prepare practical applications. 
Especially new engine concepts in airplane engineering could 
lead to applications in which interior noise must be controlled 
without additional power consumption. For this reason future 
investigations will be carried out in order to analyze the noise 
control potential of an EMRA-approach applied to lightweight 
composite structure used to cabin interior wall.

Tab. 2: Development of the control profit in dB and induced 
charge in dB compared to g = 0.

The evolution of control profit at the resonance frequenci-
es fR1 and fR2, its decrease at the anti-resonance fAR  as well as 
the increase of the electric charge in the DN are shown in Tab. 
2. The control profit is the difference between the magnitude 
at the analyzed frequency lines for g = 0,0 and whose values 
obtained for the same frequency lines and positive values of 
g. Thus, a positive control profit represents a noise reduction, 
while negative values are associated with an increase of the 
vibration level. The same holds for the electric charge. 

The data shown in Tab. 2 proof that a significant amount of 
noise reduction is possible also for the smallest value of the 
normalized force factor, because a vibration control profit 
of nearly 10 dB is realized for g = 0,5 at fR1. At fR2 the vibrati-
on control profit is approximately 11,5 dB. At the same time 
a significant attenuation remains for H11 at fAR. The vibration 
control profit increases significantly, if the normalized force 
factor increases. It is worth notifying that the increase of the 
electric charge is lower comparted to the increase of the vi-
bration control profit.  The data also proof that a saturation is 
reached for higher values of g. The highest noise reduction for 
the response of the structure associated with a control profit  
of 23.9 is obtained for H21 at g = 0,5.

4. CONCLUSION

Theoretical investigations on semi-active noise control based 
on EMRA have been presented. A simplified lumped model 
have been proposed to analyze the concept.

It has been shown that a normalized and dimensionless for-
mulation is advantageous because the number of parameter 
that have to be analyzed can be reduced. Furthermore it has 
been shown that the concept of semi-active control based on 
EMRA can lead to different engineering problems. If the vib-
rating structure is given and the DN is already designed, it is 
necessary to adjust the DVA in order to realize a significant 
control profit. In this case especially a well-chosen force fac-
tor has to enable an appropriate coupling behavior between  
DVA and DN. If the vibration structure is given and the design 
of the DVA is completed, the engineering problem is given by 
the design of the DN.

The second problem also explains the scalability of the 
approach, because the same DVA can be applied to diffe-
rent structures and only the DN has to be re-designed. This 
could be a great benefit for product development. However, 
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Frequency g = 0,5 g = 1,5 g = 2,5 g = 3,5 g = 4,5

1st resonance in H11 9,40 16,4 18,9 19,5 20.2

1st resonance in H21 9,90 17,9 20,7 22.8 23.9

1st resonance in H31 -29,3 -31,6 -32,8 -33,5 -34,6

Anti-resonance in H11 -15,9 -23,8 -27,7 -30,0 -31,5

Anti-resonance in H21 0,00 0,00 0,00 0,00 0,00

Anti-resonance in H31 -13,9 -23,2 -27,4 -30,0 -32,2

2nd resonance in H11 11,6 18,7 21,4 22,7 23,4

2nd resonance in H21 11,4 19.4 21,8 23,8 25,1

2nd resonance in H31 -25,0 -26,6 -27,4 -28,8 -28,9

Tab. 2: Development of the control profit in dB and induced charge in dB compared to g = 0.

The evolution of  control  profit  at  the resonance frequencies  fR1  and  fR2,  its  decrease at  the anti-

resonance fAR  as well as the increase of the electric charge in the DN are shown in Tab. 2. The control

profit is the difference between the magnitude at the analyzed frequency lines for g = 0,0 and whose

values obtained for the same frequency lines and positive values of g. Thus, a positive control profit

represents a noise reduction, while negative values are associated with an increase of the vibration

level. The same holds for the electric charge. 

The data shown in Tab. 2 proof that a significant amount of noise reduction is possible also for the

smallest value of the normalized force factor, because a vibration control profit of nearly  10 dB  is

realized for g = 0,5 at fR1. At fR2 the vibration control profit is approximately 11,5 dB. At the same time

a significant attenuation remains for  H11 at  fAR. The vibration control profit increases significantly, if

the normalized force factor increases. It is worth notifying that the increase of the electric charge is

lower comparted to the increase of the vibration control profit.  The data also proof that a saturation

is reached for  higher  values  of  g.  The highest  noise  reduction for the response of  the structure

associated with a control profit of 23.9 is obtained for H21 at g = 0,5. 

4. CONCLUSION

Theoretical  investigations  on  semi-active  noise  control  based  on  EMRA have  been  presented.  A

simplified lumped model have been proposed to analyze the concept.

It has been shown that a normalized and dimensionless formulation is advantageous because the

number of parameter that have to be analyzed can be reduced. Furthermore it has been shown that

the concept of semi-active control based on EMRA can lead to different engineering problems. If the

vibrating structure is given and the DN is already designed, it is necessary to adjust the DVA in order

to realize a significant control profit. In this case especially a well-chosen force factor has to enable an

appropriate coupling behavior between DVA and DN. If the vibration structure is given and the design

of the DVA is completed, the engineering problem is given by the design of the DN.

The second problem also explains the scalability of the approach, because the same DVA can be

applied to different structures and only the DN has to be re-designed. This could be a great benefit

for  product  development.  However,  semi-active control  based on EMRA also  allows a  scalability
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