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The most common methods for determining the disperse 
composition of the gas phase in a liquid medium are opti-
cal and photometric. But they are applicable only in optica-
lly transparent environments. Since in the oil and gas field,  
gas-liquid mixtures are not only turbid, but often there is sim-
ply no optical access to them, it is preferable to use acoustic 
methods [8]. The most promising are passive methods [9-11]. 
Unlike active ones, they are non-invasive, i.e. do not affect the 
liquid-gas mixture.

Passive methods are based on the fact that air bubbles in 
water are sources of acoustic signals. They emit an acoustic 
signal due to the variable gas pressure inside the bubble.

Minnaert related the frequency of the sound ωm, emitted by 
the bubble to its radius R0 :

                          (1)

where      
ωm – circular frequency of the bubble;
R0  – average bubble radius;
Y    – adiabatic coefficient;
p0    –   fluid pressure; 
ρ   – density of the liquid, surrounding the bubble [12].
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1. INTRODUCTION

The dispersed composition of the gas phase in a liquid 
medium is one of the key parameters in many technical  
systems [1-3]. Particular attention is paid to this parameter 
in the oil and gas industry. For example, while determining 
the regimes of gas-liquid flows in the boreholes of oil-pro-
ducing wells. The flow regimes depend on the ratio of the  
“oil - water – gas” components. In the calculation methods, the 
initial data are not only the volumetric content of the gas pha-
se in the flow, but also the sizes of gas bubbles [4, 5].

Together with this, the necessity to determine the disper-
sed composition of the gas phase is also present at the stage 
of primary processing of crude oil. The degassing process is 
an example of this. Gas and water are separated from oil for 
several reasons: the separated oil gas is used as a fuel and 
chemical feedstock; the hydraulic resistance decreases toge-
ther with the decrease of the of oil, gas and water intermixing; 
the pressure fluctuations in pipelines are reduced during fur-
ther oil transportation from separators to oil treatment units 
[6, 7]. For deeper degassing of oil, acoustic deaerators have 
been developed using ultrasonic transducers. The efficiency 
of such deaerators depends on the correctly selected mode 
of ultrasound irradiation of bubbles. The irradiation mode is 
determined depending on the dispersed composition of the 
gas phase in the oil-water mixture. Decreased efficiency of the 
degassing process could lead to negative consequences. Un-
separated hydrocarbon gases have a corrosive and cavitation 
effect, which leads to a decrease in productivity and accele-
rated wear of oil pumping equipment. Therefore, the pro-
blem of controlling the parameters of the gas phase in oil and  
oil-water mixtures is urgent.
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The experiments were carried out as follows. The recording 
of the signals from the hydrophone and the microphone starts 
at the same time. Then the video recording with sound track 
on the camcorder starts. So that in the future it was possible 
to synchronize the recorded signals from the multichannel 
spectrum analyser and the video camera, a “clap” was created. 
After that, the shutter on the cylinder was opened for a short 
time, which led to a sharp increase in excess pressure in the 
„cylinder-injection needle“ system. Due to this, air was forced 
through the needle and thus bubbles were generated. The size 
of the injection needle (2) was chosen so that the oscillation 
frequency of the bubbles, calculated by the Minnaert ratio, 
was less than the lower mode of the tank filled with water 
(<2679 Hz).

During each experiment, 4 tracks were recorded:
1.	 video sequence with a resolution of 1280x720 p and a fre-

quency of 60 fps;
2.	 audio track from the microphone of the video camera (7);
3.	 audio track from the microphone (4);
4.	 audio track from the hydrophone (3).

Audio tracks were recorded with a sampling rate of 48 kHz.

The video track and the audio track from the hydrophone 
were synchronized by matching the “claps” recorded on the 
second and third audio tracks from the microphones. Then the 
spectra of signals from the hydrophone were calculated at di-
fferent times. To minimize spectrum spreading, the Hamming 
window [13, 14] was used when calculating the spectrum.

3. RESULTS

The graph of the signal recorded by the hydrophone and its 
spectrogram are shown in Fig. 2. There are 5 characteristic po-
ints marked on it. The frames from the video sequence corre-
sponding to these points are shown in Fig. 3. The moment the 
bubbles start is marked with point A. It is accompanied by a 
sharp increase in the noise level, followed by attenuation until 
the shutter is closed (point B). During this period of time, the 
intensity of bubbling is maximum. The splash before point A is 
a „clap“ for recording synchronization.

Analysis of the recorded video showed that after closing 
the shutter, the release of bubbles from the injection needle 
does not stop immediately. Due to the residual excess pressu-
re, bubbles continued to evolve. In this case, the intensity of 
bubble formation gradually decreases until the complete ce-
ssation of air flow through the needle. This can also be jud-
ged by the level of the recorded signal and the spectrogram  
(see section B-C „in Fig. 2).

The lower part of Fig. 2 shows video frames corresponding 
to regions 0, A, B, and C.

For an air bubble in water under atmospheric pressure at a 
temperature of 20 ° C, this expression is reduced to a simple 
form:

                        (2)

where 
 — bubble oscillation frequency [Hz].

Expressions (1) and (2) reflect the inverse dependence of the 
bubble radius to the frequency of the sound emitted by the 
bubble:

                        (2)

The passive acoustic method could be used to determine 
the presence of the gas phase, as well as its dispersed compo-
sition at various stages of oil production and processing.

For example, for a methane bubble in an oil-water mixture 
at a temperature of 20 ° C, expression (1) will take the form:

	           (4)

where 
M=3,14..3,76 depending on the density of the oil-water  

mixture.

2. MATERIALS AND METHODS

To demonstrate the fundamental possibility of controlling 
the parameters of the gas phase in a liquid medium, an ex-
perimental apparatus was assembled. It is a transparent cu-
be-shaped tank with dimensions of 28x28x28 cm (1), filled in 
with water to a level of 22 cm. A 30G injection needle (2) was 
installed at the bottom of the tank. Through this needle air is 
supplied from a balloon (6) for the means of bubbling. The me-
asuring path consists of a Bruel & Kjaer type 8103 hydrophone 
and a Bruel & Kjaer type 4961 microphone (4) connected to a 
Pulse Lan-XI multichannel spectrum analyser. The process of 
bubbling in the net volume of the reservoir is recorded on a 
video camera (7). The microphone (4) is installed next to the 
video camera (7).

Fig. 1: Experimental apparatus diagram
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Fig. 4: Bubble signal spectra plots

4. CONCLUSION

The possibility of determining the bubble size by a passive 
acoustic method is demonstrated. Under laboratory conditi-
ons, the acoustic signals emitted by the bubbles were recor-
ded. Using synchronous video filming, the correspondence of 
the bubble parameter estimation based on the signal recorded 
by the hydrophone is shown. According to the spectrogram of 
this signal, it is possible to diagnose the dynamics of changes 
in the state of the liquid-gas mixture, namely: determining the 
moment when gas bubbles appear in a liquid medium, asse-
ssing the number and size of bubbles at any time intervals.

It is proposed to use such a technique to control the para-
meters of the gas phase in oil and oil-water mixtures at various 
stages of production and refining in order to:
1.	 determination of the regimes of liquid-gas flows in the 

shafts of oil-producing wells, in the calculation methods 
of which information on the dispersed composition of the 
gas phase is required;

2.	 selection of the parameter of the operating modes of 
acoustic deaerators;

3.	 monitoring the efficiency of the degassers;
4.	 detecting the presence of an unwanted gas phase in va-

rious sections of pipelines, etc.

Fig. 2: A graph of the signal recorded by the hydrophone and its 
spectrogram

Fig. 4 shows the signal spectra at different points in time 
corresponding to the points marked in Fig. 2: 1, B, 2 and C. 
With an open shutter (point 1), the main spectrum peaks fall 
at frequencies in the region of 1350 Hz, after closing the valve 
(point B) - 1680 Hz, at an intermediate moment of time un-
til complete attenuation (point 2) - 1760 Hz, and at the final 
moment before the cessation of bubbling - 1990 Hz. Also, the 
spectra show peaks at frequencies from 3700 to 4100 Hz. They 
correspond to smaller bubbles, which can be seen in the fra-
mes shown in Fig. 3.

An increase in the frequency of peaks in the spectra reflects 
a decrease in bubble size. And this is true. It is obvious that 
with a decrease in the flow rate of air flow through the needle, 
the size of the bubbles decreases. Using expression (3), the si-
zes of the bubbles were estimated. Their radius over the entire 
time interval (A - C) decreased from 2.4 to 1.7 mm. The radius 
of small bubbles varied from 0.9 to 0.8 mm.

Fig. 3: Frames from the footage at various points in time
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