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A comparative analysis of the experimental data obtained 
for heterogeneous structures (casings with a set of stiffeners, 
casings with equipment installed in them, etc.) and the calcu-
lated estimates obtained by expression (1) has shown that the 
calculated estimates differ significantly from the experiment.

Therefore, expression (1) cannot be used to calculate the 
impedance magnitude of anisotropic structures in the low fre-
quency range.

The purpose of this article is to obtain an analytical depen-
dence for calculating the impedance characteristic of an ani-
sotropic engineering structure in the low-frequency range.

2. MATHEMATICAL MODEL

The necessary expression for calculating the impedance 
magnitude of anisotropic structures in the low-frequency 
range can be obtained as follows. Constructively, an anisotro-
pic structure in the pre-resonant frequency range 0 < f < f1  
(f1, Hz – frequency starting from which the oscillating system 
cannot be considered as a solid whole) can be represented as 
a beam with a center of mass arbitrarily located relative to the 
axis of symmetry. Consider a mathematical model describing 
a beam with an arbitrarily located center of mass. The beam 
is installed on two vibration isolators with the same stiffness 
and at a point with a coordinate xF , harmonic driving for-
ce Fcos(ω∙t) (ω=2 πf – circular frequency) affects the beam  
(Fig. 1). Oscillations of such a system were researched in a 
number of papers, e.g., in [5, 9] and can be described by a sys-
tem of differential equations
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1. INTRODUCTION

Impedance characteristics of engineering structures are wi-
dely used in solving a wide range of vibroacoustic problems 
[1–18], e.g., such as:

– radiation of engineering structures to the environment  
[8, 10, 12, 16];

– vibration damping in engineering structures [1–4, 8, 10, 11, 
13, 15–18];

– isolation of low-frequency vibrations of mechanisms  
[5, 8, 9, 14, 16, 18];

– the functioning diagnostics of engineering structures  
[6, 7, 15].

Depending on the excitation frequency, an engineering 
structure freely suspended oscillates in the low-frequency 
range as a solid whole and as the frequency increases, reso-
nant vibration arises in it.

At present, when considering low-frequency oscillations of 
engineering structures as a solid whole, the latter is represen-
ted as a homogeneous beam with a mass uniformly distribu-
ted along its length. In [8], expression (1) is given. This expre-
ssion allows calculating the impedance value Zhw of a freely 
suspended structure in relation to the driving force applied at 
any point along the length of a homogeneous element.

        (1)

where 
M  is the mass of a homogeneous element, 
ω=2 πf  is the circular frequency,
xa  is the distance from the observation point to the end 

of the element, 
xF  is the distance from the point of the force application 

to the end of the element, 
l  is the length of the element.
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1. INTRODUCTION 
 
Impedance characteristics of engineering structures are widely used in solving a wide range of 
vibroacoustic problems [1–18], e.g., such as: 
 
– radiation of engineering structures to the environment [8, 10, 12, 16]; 
– vibration damping in engineering structures [1–4, 8, 10, 11, 13, 15–18]; 
– isolation of low-frequency vibrations of mechanisms [5, 8, 9, 14, 16, 18]; 
– the functioning diagnostics of engineering structures [6, 7, 15]. 
 
Depending on the excitation frequency, an engineering structure freely suspended oscillates in the low-
frequency range as a solid whole and as the frequency increases, resonant vibration arises in it. 
 
At present, when considering low-frequency oscillations of engineering structures as a solid whole, the 
latter is represented as a homogeneous beam with a mass uniformly distributed along its length. In [8], 
expression (1) is given. This expression allows calculating the impedance value hwZ  of a freely 
suspended structure in relation to the driving force applied at any point along the length of a 
homogeneous element. 
 𝒁𝒁𝒉𝒉𝒉𝒉 = 𝒋𝒋𝒋𝒋𝒋𝒋

𝟏𝟏−𝟑𝟑(𝟐𝟐𝒙𝒙𝒂𝒂𝒍𝒍 −𝟏𝟏)(𝟏𝟏−𝟐𝟐𝒙𝒙𝑭𝑭𝒍𝒍 )
, (1) 

   
where M is the mass of a homogeneous element, 𝒋𝒋 = 𝟐𝟐𝟐𝟐𝟐𝟐 is the circular frequency, 𝒙𝒙𝒂𝒂 is the distance 
from the observation point to the end of the element, 𝒙𝒙𝑭𝑭 is the distance from the point of the force 
application to the end of the element, l is the length of the element. 
 
A comparative analysis of the experimental data obtained for heterogeneous structures (casings with 
a set of stiffeners, casings with equipment installed in them, etc.) and the calculated estimates 
obtained by expression (1) has shown that the calculated estimates differ significantly from the 
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Then from system (3) we obtain the following algebraic 
equations with unknowns and

(4)

From equations (4), the complex velocity                 is expre-
ssed as

             (5)

where 
D1=1;
D2=c/(jω) (b-a-2x)-jwMx; 
D3=xF; 
D4= c/(jω) [a2+b2-(b-a)x]+ jJ; 
D5= ωM+2 c/( j ω); D6=D2; 
D7=c/( jω)(b-a); 
D8=D4.

Expression (5) determines the transition impedance Zper of the 
system at a point with a coordinate x in relation to the force 
Fejwt applied at the point xF as Zper=F/       , or after carrying out 
algebraic transformations of determinant (5):

            (6)

Where

When
x=xF , expression (6) determines the input impedance of the 

structure.

Analysis of expressions (6) shows that the frequency respon-
se of a mechanical impedance has two resonances and one 
antiresonance. The proper frequencies ω(r)

1,2 of this system are 
defined as

            (7)

where

and the antiresonance frequency ω(ar) as

             (8)

According to expression (6), a calculation for a mathemati-
cal model that is a structure in the form of model 1 shown in  
Fig. 2 a) and installed on two identical vibration isolators was 
made.
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𝑴𝑴𝒅𝒅𝒗𝒗𝑴𝑴
𝒅𝒅𝒕𝒕 = 𝑹𝑹𝑩𝑩 + 𝑹𝑹𝑨𝑨 + 𝑭𝑭𝐜𝐜𝐜𝐜𝐜𝐜(𝝎𝝎𝒕𝒕)

𝑱𝑱 𝒅𝒅𝒅𝒅𝒅𝒅𝒕𝒕 = 𝒃𝒃𝑹𝑹𝑩𝑩 + 𝒂𝒂𝑹𝑹𝑨𝑨 + 𝒙𝒙𝑭𝑭𝑭𝑭𝐜𝐜𝐜𝐜𝐜𝐜(𝝎𝝎𝒕𝒕)
𝑹𝑹𝑨𝑨 = −𝒄𝒄𝒅𝒅∆𝒚𝒚𝑨𝑨𝒅𝒅𝒕𝒕 ;  𝑹𝑹𝑩𝑩 = −𝒄𝒄𝒅𝒅∆𝒚𝒚𝑩𝑩𝒅𝒅𝒕𝒕

𝒗𝒗𝑨𝑨 = 𝒅𝒅∆𝒚𝒚𝑨𝑨
𝒅𝒅𝒕𝒕 ;  𝒗𝒗𝑩𝑩 = 𝒅𝒅∆𝒚𝒚𝑩𝑩

𝒅𝒅𝒕𝒕 ;  𝒗𝒗𝑨𝑨 = 𝒗𝒗𝑴𝑴 −𝒅𝒅𝒂𝒂
𝒗𝒗𝑩𝑩 = 𝒗𝒗𝑴𝑴 +𝒅𝒅𝒃𝒃; 𝒗𝒗𝑿𝑿 = 𝒗𝒗𝑴𝑴 +𝒅𝒅𝒙𝒙 }

  
 

  
 

 (2) 

    
where: M, J – mass and moment of inertia of the beam mass relative to the center of mass; 𝑹𝑹𝑨𝑨, 𝑹𝑹𝑩𝑩– 
the reaction of vibration isolators at points A and B; F, ω– the amplitude and circular frequency of the 
driving force; c – the stiffness coefficient of each of the vibration isolators; 𝒗𝒗𝑨𝑨,𝒗𝒗𝑩𝑩,𝒗𝒗𝑴𝑴,𝒗𝒗𝑿𝑿– the speed of 
the left and right vibration isolators, the center of mass and the beam point with the coordinate x, 
respectively; 𝒅𝒅– the angular velocity of torsional vibrations of the structure; a, b – the distance from 
the left support А to the center of mass of the structure and from the center of mass of the structure 
to the right support В (Fig. 1); 𝒙𝒙𝑭𝑭,𝒙𝒙  – the coordinates of the points where the oscillations are excited 
by the driving force 𝑭𝑭 𝐜𝐜𝐜𝐜𝐜𝐜(𝝎𝝎 ∙ 𝒕𝒕)  and the oscillation rate is measured, respectively; △ 𝒚𝒚𝑨𝑨,△ 𝒚𝒚𝑩𝑩 – 
dynamic movements of the right and left vibration isolators, respectively. 
After transformations, the system of differential equations (2) will be written in the form 
 

𝑴𝑴𝒅𝒅𝒗𝒗𝑿𝑿
𝒅𝒅𝒕𝒕 −𝑴𝑴𝒙𝒙

𝒅𝒅𝒅𝒅
𝒅𝒅𝒕𝒕 − (𝑹𝑹𝑩𝑩 + 𝑹𝑹𝑨𝑨) = 𝑭𝑭𝐜𝐜𝐜𝐜𝐜𝐜(𝝎𝝎𝒕𝒕)

𝑱𝑱 𝒅𝒅𝒅𝒅𝒅𝒅𝒕𝒕 − (𝒃𝒃𝑹𝑹𝑩𝑩 − 𝒂𝒂𝑹𝑹𝑨𝑨) = 𝒙𝒙𝑭𝑭𝑭𝑭𝐜𝐜𝐜𝐜𝐜𝐜(𝝎𝝎𝒕𝒕)
−(𝒅𝒅𝑹𝑹𝑩𝑩𝒅𝒅𝒕𝒕 + 𝒅𝒅𝑹𝑹𝑨𝑨

𝒅𝒅𝒕𝒕 ) = 𝒄𝒄[𝟐𝟐𝒗𝒗𝑿𝑿 + (𝒃𝒃 − 𝒂𝒂 − 𝟐𝟐𝒙𝒙)𝒅𝒅]

−(𝒃𝒃𝒅𝒅𝑹𝑹𝑩𝑩𝒅𝒅𝒕𝒕 − 𝒂𝒂
𝒅𝒅𝑹𝑹𝑨𝑨
𝒅𝒅𝒕𝒕 ) = 𝒄𝒄{(𝒃𝒃 − 𝒂𝒂)𝒗𝒗𝑿𝑿 + [𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐 − (𝒃𝒃 − 𝒂𝒂)𝒙𝒙]}}

  
 

  
 

    (3) 

   
 

(2)

   
where: 
M, J  – mass and moment of inertia of the beam mass 

relative to the center of mass;,
RA, RE – the reaction of vibration isolators at points A 

and B; F,
ω – the amplitude and circular frequency of the 

driving force; 
c  – the stiffness coefficient of each of the vibration 

isolators; 
VA, VB, VM, VX– the speed of the left and right vibration isola-

tors, the center of mass and the beam point with 
the coordinate x, respectively;

φ  – the angular velocity of torsional vibrations of 
the structure; a, b – the distance from the left 
support А to the center of mass of the structure 
and from the center of mass of the structure to 
the right support В (Fig. 1);  

XF, X  – the coordinates of the points where the oscilla-
tions are excited by the driving force Fcos(ω∙t)  
and the oscillation rate is measured, respective-
ly; 

∆yA, ∆xB – dynamic movements of the right and left vib-
ration isolators, respectively.

After transformations, the system of differential equations 
(2) will be written in the form

(3)

Fig. 1: Mathematical model of a vibroinsulated structure with a 
displaced center of mass (c.m.

After the transition to a complex form of recording, one will 
seek a particular solution of this system in the form of steady-
-state oscillation: 
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Fig. 1: Mathematical model of a vibroinsulated structure with a displaced center of mass (c.m.) 
 
After the transition to a complex form of recording, one will seek a particular solution of this system in 
the form of steady-state oscillation: 𝒗𝒗𝒙𝒙 = �̅�𝒗𝒙𝒙𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋, 𝝋𝝋 = �̅�𝝋𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋. 
Then from system (3) we obtain the following algebraic equations with unknowns �̅�𝒗𝒙𝒙 and �̅�𝝋 
 

(𝒋𝒋𝒋𝒋𝒋𝒋 + 𝟐𝟐𝟐𝟐
𝒋𝒋𝒋𝒋)𝒗𝒗𝑿𝑿̅̅̅̅ + [ 𝟐𝟐𝒋𝒋𝒋𝒋 (𝒃𝒃 − 𝒂𝒂 − 𝟐𝟐𝒙𝒙) − 𝒋𝒋𝒋𝒋𝒋𝒋𝒙𝒙] �̅�𝝋 = 𝑭𝑭

𝟐𝟐
𝒋𝒋𝒋𝒋 (𝒃𝒃 − 𝒂𝒂)𝒗𝒗𝑿𝑿̅̅̅̅ + { 𝟐𝟐𝒋𝒋𝒋𝒋 [𝒂𝒂

𝟐𝟐 + 𝒃𝒃𝟐𝟐 − (𝒃𝒃 − 𝒂𝒂)𝒙𝒙] + 𝒋𝒋𝒋𝒋𝒋𝒋} �̅�𝝋 = 𝒙𝒙𝑭𝑭𝑭𝑭
} (4) 
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 .  
When 𝒙𝒙 = 𝒙𝒙𝑭𝑭, expression (6) determines the input impedance of the structure. 
Analysis of expressions (6) shows that the frequency response of a mechanical impedance has two 
resonances and one antiresonance. The proper frequencies ( )

1,2
r  of this system are defined as 
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𝟎𝟎.𝟓𝟓
]
𝟎𝟎.𝟓𝟓

𝑷𝑷𝟎𝟎.𝟓𝟓, (7) 
   

where ( ) ( ) = + + 
2 21 2P c M M a b J ; ( ) ( )= + 22Q c a b JM , and the antiresonance frequency ( )ar  

as 
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𝟎𝟎.𝟓𝟓

. (8) 
   

According to expression (6), a calculation for a mathematical model that is a structure in the form of 
model 1 shown in figure 2 a) and installed on two identical vibration isolators was made. 
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|
𝑭𝑭, (5) 

   
where D1=1; D2=c/(j𝒋𝒋) (b-a-2x)-jwMx; D3=xF; D4= c/(j𝒋𝒋) [a2+b2-(b-a)x]+ j𝒋𝒋J; D5= j𝒋𝒋𝒋𝒋 + 𝟐𝟐𝟐𝟐/(𝐣𝐣𝒋𝒋); 
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in relation to the force 𝑭𝑭𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋 applied at the point 𝒙𝒙𝑭𝑭 as 𝒁𝒁𝒑𝒑𝒆𝒆𝒑𝒑 = 𝑭𝑭/�̅�𝒗𝒙𝒙, or after carrying out algebraic 
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𝑲𝑲(𝒋𝒋;𝒙𝒙), (6) 
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 .  
When 𝒙𝒙 = 𝒙𝒙𝑭𝑭, expression (6) determines the input impedance of the structure. 
Analysis of expressions (6) shows that the frequency response of a mechanical impedance has two 
resonances and one antiresonance. The proper frequencies ( )

1,2
r  of this system are defined as 

 

𝒋𝒋𝟏𝟏,𝟐𝟐
(𝒑𝒑) = [𝟏𝟏 ± (𝟏𝟏 − 𝑸𝑸

𝑷𝑷𝟐𝟐)
𝟎𝟎.𝟓𝟓
]
𝟎𝟎.𝟓𝟓

𝑷𝑷𝟎𝟎.𝟓𝟓, (7) 
   

where ( ) ( ) = + + 
2 21 2P c M M a b J ; ( ) ( )= + 22Q c a b JM , and the antiresonance frequency ( )ar  

as 
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𝒂𝒂𝟐𝟐+𝒃𝒃𝟐𝟐]}
𝟎𝟎.𝟓𝟓

. (8) 
   

According to expression (6), a calculation for a mathematical model that is a structure in the form of 
model 1 shown in figure 2 a) and installed on two identical vibration isolators was made. 
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 .  
When 𝒙𝒙 = 𝒙𝒙𝑭𝑭, expression (6) determines the input impedance of the structure. 
Analysis of expressions (6) shows that the frequency response of a mechanical impedance has two 
resonances and one antiresonance. The proper frequencies ( )

1,2
r  of this system are defined as 

 

𝒋𝒋𝟏𝟏,𝟐𝟐
(𝒑𝒑) = [𝟏𝟏 ± (𝟏𝟏 − 𝑸𝑸

𝑷𝑷𝟐𝟐)
𝟎𝟎.𝟓𝟓
]
𝟎𝟎.𝟓𝟓

𝑷𝑷𝟎𝟎.𝟓𝟓, (7) 
   

where ( ) ( ) = + + 
2 21 2P c M M a b J ; ( ) ( )= + 22Q c a b JM , and the antiresonance frequency ( )ar  

as 
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𝒂𝒂𝟐𝟐+𝒃𝒃𝟐𝟐]}
𝟎𝟎.𝟓𝟓

. (8) 
   

According to expression (6), a calculation for a mathematical model that is a structure in the form of 
model 1 shown in figure 2 a) and installed on two identical vibration isolators was made. 

Journal Akustika  VOLUME 39/April 2021 
 

 
 Page 3 of 7 

 
 

Fig. 1: Mathematical model of a vibroinsulated structure with a displaced center of mass (c.m.) 
 
After the transition to a complex form of recording, one will seek a particular solution of this system in 
the form of steady-state oscillation: 𝒗𝒗𝒙𝒙 = �̅�𝒗𝒙𝒙𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋, 𝝋𝝋 = �̅�𝝋𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋. 
Then from system (3) we obtain the following algebraic equations with unknowns �̅�𝒗𝒙𝒙 and �̅�𝝋 
 

(𝒋𝒋𝒋𝒋𝒋𝒋 + 𝟐𝟐𝟐𝟐
𝒋𝒋𝒋𝒋)𝒗𝒗𝑿𝑿̅̅̅̅ + [ 𝟐𝟐𝒋𝒋𝒋𝒋 (𝒃𝒃 − 𝒂𝒂 − 𝟐𝟐𝒙𝒙) − 𝒋𝒋𝒋𝒋𝒋𝒋𝒙𝒙] �̅�𝝋 = 𝑭𝑭

𝟐𝟐
𝒋𝒋𝒋𝒋 (𝒃𝒃 − 𝒂𝒂)𝒗𝒗𝑿𝑿̅̅̅̅ + { 𝟐𝟐𝒋𝒋𝒋𝒋 [𝒂𝒂

𝟐𝟐 + 𝒃𝒃𝟐𝟐 − (𝒃𝒃 − 𝒂𝒂)𝒙𝒙] + 𝒋𝒋𝒋𝒋𝒋𝒋} �̅�𝝋 = 𝒙𝒙𝑭𝑭𝑭𝑭
} (4) 

   
From equations (4), the complex velocity �̅�𝒗𝒙𝒙 = �̅�𝒗(𝒙𝒙) is expressed as 
 

𝒗𝒗𝑿𝑿̅̅̅̅ =
|𝑫𝑫𝟏𝟏 𝑫𝑫𝟐𝟐
𝑫𝑫𝟑𝟑 𝑫𝑫𝟒𝟒

|

|𝑫𝑫𝟓𝟓 𝑫𝑫𝟔𝟔
𝑫𝑫𝟕𝟕 𝑫𝑫𝟖𝟖

|
𝑭𝑭, (5) 

   
where D1=1; D2=c/(j𝒋𝒋) (b-a-2x)-jwMx; D3=xF; D4= c/(j𝒋𝒋) [a2+b2-(b-a)x]+ j𝒋𝒋J; D5= j𝒋𝒋𝒋𝒋 + 𝟐𝟐𝟐𝟐/(𝐣𝐣𝒋𝒋); 
D6=D2; D7=c/( j𝒋𝒋)(b-a); D8=D4. 
Expression (5) determines the transition impedance 𝒁𝒁𝒑𝒑𝒆𝒆𝒑𝒑 of the system at a point with a coordinate x 
in relation to the force 𝑭𝑭𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋 applied at the point 𝒙𝒙𝑭𝑭 as 𝒁𝒁𝒑𝒑𝒆𝒆𝒑𝒑 = 𝑭𝑭/�̅�𝒗𝒙𝒙, or after carrying out algebraic 
transformations of determinant (5): 
 

𝒁𝒁𝒑𝒑𝒆𝒆𝒑𝒑 = 𝒋𝒋𝒋𝒋𝒋𝒋
𝟏𝟏+𝒋𝒋𝑿𝑿𝒙𝒙𝑭𝑭 𝒋𝒋⁄

𝑲𝑲(𝒋𝒋;𝒙𝒙), (6) 

   
Where 
 

𝑲𝑲(𝒋𝒋;𝒙𝒙) =
𝟏𝟏 − 𝟐𝟐

𝟐𝟐𝟐𝟐𝒋𝒋 [𝟐𝟐 + 𝒋𝒋𝒃𝒃𝟐𝟐 + 𝒂𝒂𝟐𝟐
𝒋𝒋 + 𝟐𝟐(𝒂𝒂 + 𝒃𝒃)𝒋𝒋𝟐𝟐𝒋𝒋]

𝟏𝟏 − 𝟐𝟐(𝒃𝒃𝟐𝟐 + 𝒂𝒂𝟐𝟐)
𝒋𝒋𝟐𝟐(𝒋𝒋 + 𝒋𝒋𝒙𝒙𝒙𝒙𝑭𝑭) [𝟏𝟏 −

(𝒃𝒃 − 𝒂𝒂)(𝒙𝒙 + 𝒙𝒙𝑭𝑭)
𝒃𝒃𝟐𝟐 + 𝒂𝒂𝟐𝟐 + 𝟐𝟐𝒙𝒙𝒙𝒙𝑭𝑭

𝒃𝒃𝟐𝟐 + 𝒂𝒂𝟐𝟐]
 

 .  
When 𝒙𝒙 = 𝒙𝒙𝑭𝑭, expression (6) determines the input impedance of the structure. 
Analysis of expressions (6) shows that the frequency response of a mechanical impedance has two 
resonances and one antiresonance. The proper frequencies ( )

1,2
r  of this system are defined as 

 

𝒋𝒋𝟏𝟏,𝟐𝟐
(𝒑𝒑) = [𝟏𝟏 ± (𝟏𝟏 − 𝑸𝑸

𝑷𝑷𝟐𝟐)
𝟎𝟎.𝟓𝟓
]
𝟎𝟎.𝟓𝟓

𝑷𝑷𝟎𝟎.𝟓𝟓, (7) 
   

where ( ) ( ) = + + 
2 21 2P c M M a b J ; ( ) ( )= + 22Q c a b JM , and the antiresonance frequency ( )ar  

as 
 

𝒋𝒋(𝒂𝒂𝒑𝒑) = {[𝟐𝟐(𝒂𝒂𝟐𝟐+𝒃𝒃𝟐𝟐)
(𝒋𝒋+𝒋𝒋𝒙𝒙𝒙𝒙𝑭𝑭

] [𝟏𝟏 − (𝒃𝒃−𝒂𝒂)(𝒙𝒙+𝒙𝒙𝑭𝑭)
(𝒂𝒂𝟐𝟐+𝒃𝒃𝟐𝟐) − 𝟐𝟐𝒙𝒙𝒙𝒙𝑭𝑭

𝒂𝒂𝟐𝟐+𝒃𝒃𝟐𝟐]}
𝟎𝟎.𝟓𝟓

. (8) 
   

According to expression (6), a calculation for a mathematical model that is a structure in the form of 
model 1 shown in figure 2 a) and installed on two identical vibration isolators was made. 

Journal Akustika  VOLUME 39/April 2021 
 

 
 Page 3 of 7 

 
 

Fig. 1: Mathematical model of a vibroinsulated structure with a displaced center of mass (c.m.) 
 
After the transition to a complex form of recording, one will seek a particular solution of this system in 
the form of steady-state oscillation: 𝒗𝒗𝒙𝒙 = �̅�𝒗𝒙𝒙𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋, 𝝋𝝋 = �̅�𝝋𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋. 
Then from system (3) we obtain the following algebraic equations with unknowns �̅�𝒗𝒙𝒙 and �̅�𝝋 
 

(𝒋𝒋𝒋𝒋𝒋𝒋 + 𝟐𝟐𝟐𝟐
𝒋𝒋𝒋𝒋)𝒗𝒗𝑿𝑿̅̅̅̅ + [ 𝟐𝟐𝒋𝒋𝒋𝒋 (𝒃𝒃 − 𝒂𝒂 − 𝟐𝟐𝒙𝒙) − 𝒋𝒋𝒋𝒋𝒋𝒋𝒙𝒙] �̅�𝝋 = 𝑭𝑭

𝟐𝟐
𝒋𝒋𝒋𝒋 (𝒃𝒃 − 𝒂𝒂)𝒗𝒗𝑿𝑿̅̅̅̅ + { 𝟐𝟐𝒋𝒋𝒋𝒋 [𝒂𝒂

𝟐𝟐 + 𝒃𝒃𝟐𝟐 − (𝒃𝒃 − 𝒂𝒂)𝒙𝒙] + 𝒋𝒋𝒋𝒋𝒋𝒋} �̅�𝝋 = 𝒙𝒙𝑭𝑭𝑭𝑭
} (4) 

   
From equations (4), the complex velocity �̅�𝒗𝒙𝒙 = �̅�𝒗(𝒙𝒙) is expressed as 
 

𝒗𝒗𝑿𝑿̅̅̅̅ =
|𝑫𝑫𝟏𝟏 𝑫𝑫𝟐𝟐
𝑫𝑫𝟑𝟑 𝑫𝑫𝟒𝟒

|

|𝑫𝑫𝟓𝟓 𝑫𝑫𝟔𝟔
𝑫𝑫𝟕𝟕 𝑫𝑫𝟖𝟖

|
𝑭𝑭, (5) 

   
where D1=1; D2=c/(j𝒋𝒋) (b-a-2x)-jwMx; D3=xF; D4= c/(j𝒋𝒋) [a2+b2-(b-a)x]+ j𝒋𝒋J; D5= j𝒋𝒋𝒋𝒋 + 𝟐𝟐𝟐𝟐/(𝐣𝐣𝒋𝒋); 
D6=D2; D7=c/( j𝒋𝒋)(b-a); D8=D4. 
Expression (5) determines the transition impedance 𝒁𝒁𝒑𝒑𝒆𝒆𝒑𝒑 of the system at a point with a coordinate x 
in relation to the force 𝑭𝑭𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋 applied at the point 𝒙𝒙𝑭𝑭 as 𝒁𝒁𝒑𝒑𝒆𝒆𝒑𝒑 = 𝑭𝑭/�̅�𝒗𝒙𝒙, or after carrying out algebraic 
transformations of determinant (5): 
 

𝒁𝒁𝒑𝒑𝒆𝒆𝒑𝒑 = 𝒋𝒋𝒋𝒋𝒋𝒋
𝟏𝟏+𝒋𝒋𝑿𝑿𝒙𝒙𝑭𝑭 𝒋𝒋⁄

𝑲𝑲(𝒋𝒋;𝒙𝒙), (6) 

   
Where 
 

𝑲𝑲(𝒋𝒋;𝒙𝒙) =
𝟏𝟏 − 𝟐𝟐

𝟐𝟐𝟐𝟐𝒋𝒋 [𝟐𝟐 + 𝒋𝒋𝒃𝒃𝟐𝟐 + 𝒂𝒂𝟐𝟐
𝒋𝒋 + 𝟐𝟐(𝒂𝒂 + 𝒃𝒃)𝒋𝒋𝟐𝟐𝒋𝒋]

𝟏𝟏 − 𝟐𝟐(𝒃𝒃𝟐𝟐 + 𝒂𝒂𝟐𝟐)
𝒋𝒋𝟐𝟐(𝒋𝒋 + 𝒋𝒋𝒙𝒙𝒙𝒙𝑭𝑭) [𝟏𝟏 −

(𝒃𝒃 − 𝒂𝒂)(𝒙𝒙 + 𝒙𝒙𝑭𝑭)
𝒃𝒃𝟐𝟐 + 𝒂𝒂𝟐𝟐 + 𝟐𝟐𝒙𝒙𝒙𝒙𝑭𝑭

𝒃𝒃𝟐𝟐 + 𝒂𝒂𝟐𝟐]
 

 .  
When 𝒙𝒙 = 𝒙𝒙𝑭𝑭, expression (6) determines the input impedance of the structure. 
Analysis of expressions (6) shows that the frequency response of a mechanical impedance has two 
resonances and one antiresonance. The proper frequencies ( )

1,2
r  of this system are defined as 

 

𝒋𝒋𝟏𝟏,𝟐𝟐
(𝒑𝒑) = [𝟏𝟏 ± (𝟏𝟏 − 𝑸𝑸

𝑷𝑷𝟐𝟐)
𝟎𝟎.𝟓𝟓
]
𝟎𝟎.𝟓𝟓

𝑷𝑷𝟎𝟎.𝟓𝟓, (7) 
   

where ( ) ( ) = + + 
2 21 2P c M M a b J ; ( ) ( )= + 22Q c a b JM , and the antiresonance frequency ( )ar  

as 
 

𝒋𝒋(𝒂𝒂𝒑𝒑) = {[𝟐𝟐(𝒂𝒂𝟐𝟐+𝒃𝒃𝟐𝟐)
(𝒋𝒋+𝒋𝒋𝒙𝒙𝒙𝒙𝑭𝑭

] [𝟏𝟏 − (𝒃𝒃−𝒂𝒂)(𝒙𝒙+𝒙𝒙𝑭𝑭)
(𝒂𝒂𝟐𝟐+𝒃𝒃𝟐𝟐) − 𝟐𝟐𝒙𝒙𝒙𝒙𝑭𝑭

𝒂𝒂𝟐𝟐+𝒃𝒃𝟐𝟐]}
𝟎𝟎.𝟓𝟓

. (8) 
   

According to expression (6), a calculation for a mathematical model that is a structure in the form of 
model 1 shown in figure 2 a) and installed on two identical vibration isolators was made. 

Journal Akustika  VOLUME 39/April 2021 
 

 
 Page 3 of 7 

 
 

Fig. 1: Mathematical model of a vibroinsulated structure with a displaced center of mass (c.m.) 
 
After the transition to a complex form of recording, one will seek a particular solution of this system in 
the form of steady-state oscillation: 𝒗𝒗𝒙𝒙 = �̅�𝒗𝒙𝒙𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋, 𝝋𝝋 = �̅�𝝋𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋. 
Then from system (3) we obtain the following algebraic equations with unknowns �̅�𝒗𝒙𝒙 and �̅�𝝋 
 

(𝒋𝒋𝒋𝒋𝒋𝒋 + 𝟐𝟐𝟐𝟐
𝒋𝒋𝒋𝒋)𝒗𝒗𝑿𝑿̅̅̅̅ + [ 𝟐𝟐𝒋𝒋𝒋𝒋 (𝒃𝒃 − 𝒂𝒂 − 𝟐𝟐𝒙𝒙) − 𝒋𝒋𝒋𝒋𝒋𝒋𝒙𝒙] �̅�𝝋 = 𝑭𝑭

𝟐𝟐
𝒋𝒋𝒋𝒋 (𝒃𝒃 − 𝒂𝒂)𝒗𝒗𝑿𝑿̅̅̅̅ + { 𝟐𝟐𝒋𝒋𝒋𝒋 [𝒂𝒂

𝟐𝟐 + 𝒃𝒃𝟐𝟐 − (𝒃𝒃 − 𝒂𝒂)𝒙𝒙] + 𝒋𝒋𝒋𝒋𝒋𝒋} �̅�𝝋 = 𝒙𝒙𝑭𝑭𝑭𝑭
} (4) 

   
From equations (4), the complex velocity �̅�𝒗𝒙𝒙 = �̅�𝒗(𝒙𝒙) is expressed as 
 

𝒗𝒗𝑿𝑿̅̅̅̅ =
|𝑫𝑫𝟏𝟏 𝑫𝑫𝟐𝟐
𝑫𝑫𝟑𝟑 𝑫𝑫𝟒𝟒

|

|𝑫𝑫𝟓𝟓 𝑫𝑫𝟔𝟔
𝑫𝑫𝟕𝟕 𝑫𝑫𝟖𝟖

|
𝑭𝑭, (5) 

   
where D1=1; D2=c/(j𝒋𝒋) (b-a-2x)-jwMx; D3=xF; D4= c/(j𝒋𝒋) [a2+b2-(b-a)x]+ j𝒋𝒋J; D5= j𝒋𝒋𝒋𝒋 + 𝟐𝟐𝟐𝟐/(𝐣𝐣𝒋𝒋); 
D6=D2; D7=c/( j𝒋𝒋)(b-a); D8=D4. 
Expression (5) determines the transition impedance 𝒁𝒁𝒑𝒑𝒆𝒆𝒑𝒑 of the system at a point with a coordinate x 
in relation to the force 𝑭𝑭𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋 applied at the point 𝒙𝒙𝑭𝑭 as 𝒁𝒁𝒑𝒑𝒆𝒆𝒑𝒑 = 𝑭𝑭/�̅�𝒗𝒙𝒙, or after carrying out algebraic 
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 .  
When 𝒙𝒙 = 𝒙𝒙𝑭𝑭, expression (6) determines the input impedance of the structure. 
Analysis of expressions (6) shows that the frequency response of a mechanical impedance has two 
resonances and one antiresonance. The proper frequencies ( )

1,2
r  of this system are defined as 
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𝟎𝟎.𝟓𝟓
]
𝟎𝟎.𝟓𝟓

𝑷𝑷𝟎𝟎.𝟓𝟓, (7) 
   

where ( ) ( ) = + + 
2 21 2P c M M a b J ; ( ) ( )= + 22Q c a b JM , and the antiresonance frequency ( )ar  
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. (8) 
   

According to expression (6), a calculation for a mathematical model that is a structure in the form of 
model 1 shown in figure 2 a) and installed on two identical vibration isolators was made. 

Journal Akustika  VOLUME 39/April 2021 
 

 
 Page 3 of 7 

 
 

Fig. 1: Mathematical model of a vibroinsulated structure with a displaced center of mass (c.m.) 
 
After the transition to a complex form of recording, one will seek a particular solution of this system in 
the form of steady-state oscillation: 𝒗𝒗𝒙𝒙 = �̅�𝒗𝒙𝒙𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋, 𝝋𝝋 = �̅�𝝋𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋. 
Then from system (3) we obtain the following algebraic equations with unknowns �̅�𝒗𝒙𝒙 and �̅�𝝋 
 

(𝒋𝒋𝒋𝒋𝒋𝒋 + 𝟐𝟐𝟐𝟐
𝒋𝒋𝒋𝒋)𝒗𝒗𝑿𝑿̅̅̅̅ + [ 𝟐𝟐𝒋𝒋𝒋𝒋 (𝒃𝒃 − 𝒂𝒂 − 𝟐𝟐𝒙𝒙) − 𝒋𝒋𝒋𝒋𝒋𝒋𝒙𝒙] �̅�𝝋 = 𝑭𝑭

𝟐𝟐
𝒋𝒋𝒋𝒋 (𝒃𝒃 − 𝒂𝒂)𝒗𝒗𝑿𝑿̅̅̅̅ + { 𝟐𝟐𝒋𝒋𝒋𝒋 [𝒂𝒂

𝟐𝟐 + 𝒃𝒃𝟐𝟐 − (𝒃𝒃 − 𝒂𝒂)𝒙𝒙] + 𝒋𝒋𝒋𝒋𝒋𝒋} �̅�𝝋 = 𝒙𝒙𝑭𝑭𝑭𝑭
} (4) 

   
From equations (4), the complex velocity �̅�𝒗𝒙𝒙 = �̅�𝒗(𝒙𝒙) is expressed as 
 

𝒗𝒗𝑿𝑿̅̅̅̅ =
|𝑫𝑫𝟏𝟏 𝑫𝑫𝟐𝟐
𝑫𝑫𝟑𝟑 𝑫𝑫𝟒𝟒

|

|𝑫𝑫𝟓𝟓 𝑫𝑫𝟔𝟔
𝑫𝑫𝟕𝟕 𝑫𝑫𝟖𝟖

|
𝑭𝑭, (5) 

   
where D1=1; D2=c/(j𝒋𝒋) (b-a-2x)-jwMx; D3=xF; D4= c/(j𝒋𝒋) [a2+b2-(b-a)x]+ j𝒋𝒋J; D5= j𝒋𝒋𝒋𝒋 + 𝟐𝟐𝟐𝟐/(𝐣𝐣𝒋𝒋); 
D6=D2; D7=c/( j𝒋𝒋)(b-a); D8=D4. 
Expression (5) determines the transition impedance 𝒁𝒁𝒑𝒑𝒆𝒆𝒑𝒑 of the system at a point with a coordinate x 
in relation to the force 𝑭𝑭𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋 applied at the point 𝒙𝒙𝑭𝑭 as 𝒁𝒁𝒑𝒑𝒆𝒆𝒑𝒑 = 𝑭𝑭/�̅�𝒗𝒙𝒙, or after carrying out algebraic 
transformations of determinant (5): 
 

𝒁𝒁𝒑𝒑𝒆𝒆𝒑𝒑 = 𝒋𝒋𝒋𝒋𝒋𝒋
𝟏𝟏+𝒋𝒋𝑿𝑿𝒙𝒙𝑭𝑭 𝒋𝒋⁄

𝑲𝑲(𝒋𝒋;𝒙𝒙), (6) 

   
Where 
 

𝑲𝑲(𝒋𝒋;𝒙𝒙) =
𝟏𝟏 − 𝟐𝟐

𝟐𝟐𝟐𝟐𝒋𝒋 [𝟐𝟐 + 𝒋𝒋𝒃𝒃𝟐𝟐 + 𝒂𝒂𝟐𝟐
𝒋𝒋 + 𝟐𝟐(𝒂𝒂 + 𝒃𝒃)𝒋𝒋𝟐𝟐𝒋𝒋]

𝟏𝟏 − 𝟐𝟐(𝒃𝒃𝟐𝟐 + 𝒂𝒂𝟐𝟐)
𝒋𝒋𝟐𝟐(𝒋𝒋 + 𝒋𝒋𝒙𝒙𝒙𝒙𝑭𝑭) [𝟏𝟏 −

(𝒃𝒃 − 𝒂𝒂)(𝒙𝒙 + 𝒙𝒙𝑭𝑭)
𝒃𝒃𝟐𝟐 + 𝒂𝒂𝟐𝟐 + 𝟐𝟐𝒙𝒙𝒙𝒙𝑭𝑭

𝒃𝒃𝟐𝟐 + 𝒂𝒂𝟐𝟐]
 

 .  
When 𝒙𝒙 = 𝒙𝒙𝑭𝑭, expression (6) determines the input impedance of the structure. 
Analysis of expressions (6) shows that the frequency response of a mechanical impedance has two 
resonances and one antiresonance. The proper frequencies ( )

1,2
r  of this system are defined as 

 

𝒋𝒋𝟏𝟏,𝟐𝟐
(𝒑𝒑) = [𝟏𝟏 ± (𝟏𝟏 − 𝑸𝑸

𝑷𝑷𝟐𝟐)
𝟎𝟎.𝟓𝟓
]
𝟎𝟎.𝟓𝟓

𝑷𝑷𝟎𝟎.𝟓𝟓, (7) 
   

where ( ) ( ) = + + 
2 21 2P c M M a b J ; ( ) ( )= + 22Q c a b JM , and the antiresonance frequency ( )ar  

as 
 

𝒋𝒋(𝒂𝒂𝒑𝒑) = {[𝟐𝟐(𝒂𝒂𝟐𝟐+𝒃𝒃𝟐𝟐)
(𝒋𝒋+𝒋𝒋𝒙𝒙𝒙𝒙𝑭𝑭

] [𝟏𝟏 − (𝒃𝒃−𝒂𝒂)(𝒙𝒙+𝒙𝒙𝑭𝑭)
(𝒂𝒂𝟐𝟐+𝒃𝒃𝟐𝟐) − 𝟐𝟐𝒙𝒙𝒙𝒙𝑭𝑭

𝒂𝒂𝟐𝟐+𝒃𝒃𝟐𝟐]}
𝟎𝟎.𝟓𝟓

. (8) 
   

According to expression (6), a calculation for a mathematical model that is a structure in the form of 
model 1 shown in figure 2 a) and installed on two identical vibration isolators was made. 

Journal Akustika  VOLUME 39/April 2021 
 

 
 Page 3 of 7 

 
 

Fig. 1: Mathematical model of a vibroinsulated structure with a displaced center of mass (c.m.) 
 
After the transition to a complex form of recording, one will seek a particular solution of this system in 
the form of steady-state oscillation: 𝒗𝒗𝒙𝒙 = �̅�𝒗𝒙𝒙𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋, 𝝋𝝋 = �̅�𝝋𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋. 
Then from system (3) we obtain the following algebraic equations with unknowns �̅�𝒗𝒙𝒙 and �̅�𝝋 
 

(𝒋𝒋𝒋𝒋𝒋𝒋 + 𝟐𝟐𝟐𝟐
𝒋𝒋𝒋𝒋)𝒗𝒗𝑿𝑿̅̅̅̅ + [ 𝟐𝟐𝒋𝒋𝒋𝒋 (𝒃𝒃 − 𝒂𝒂 − 𝟐𝟐𝒙𝒙) − 𝒋𝒋𝒋𝒋𝒋𝒋𝒙𝒙] �̅�𝝋 = 𝑭𝑭

𝟐𝟐
𝒋𝒋𝒋𝒋 (𝒃𝒃 − 𝒂𝒂)𝒗𝒗𝑿𝑿̅̅̅̅ + { 𝟐𝟐𝒋𝒋𝒋𝒋 [𝒂𝒂

𝟐𝟐 + 𝒃𝒃𝟐𝟐 − (𝒃𝒃 − 𝒂𝒂)𝒙𝒙] + 𝒋𝒋𝒋𝒋𝒋𝒋} �̅�𝝋 = 𝒙𝒙𝑭𝑭𝑭𝑭
} (4) 

   
From equations (4), the complex velocity �̅�𝒗𝒙𝒙 = �̅�𝒗(𝒙𝒙) is expressed as 
 

𝒗𝒗𝑿𝑿̅̅̅̅ =
|𝑫𝑫𝟏𝟏 𝑫𝑫𝟐𝟐
𝑫𝑫𝟑𝟑 𝑫𝑫𝟒𝟒

|

|𝑫𝑫𝟓𝟓 𝑫𝑫𝟔𝟔
𝑫𝑫𝟕𝟕 𝑫𝑫𝟖𝟖

|
𝑭𝑭, (5) 

   
where D1=1; D2=c/(j𝒋𝒋) (b-a-2x)-jwMx; D3=xF; D4= c/(j𝒋𝒋) [a2+b2-(b-a)x]+ j𝒋𝒋J; D5= j𝒋𝒋𝒋𝒋 + 𝟐𝟐𝟐𝟐/(𝐣𝐣𝒋𝒋); 
D6=D2; D7=c/( j𝒋𝒋)(b-a); D8=D4. 
Expression (5) determines the transition impedance 𝒁𝒁𝒑𝒑𝒆𝒆𝒑𝒑 of the system at a point with a coordinate x 
in relation to the force 𝑭𝑭𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋 applied at the point 𝒙𝒙𝑭𝑭 as 𝒁𝒁𝒑𝒑𝒆𝒆𝒑𝒑 = 𝑭𝑭/�̅�𝒗𝒙𝒙, or after carrying out algebraic 
transformations of determinant (5): 
 

𝒁𝒁𝒑𝒑𝒆𝒆𝒑𝒑 = 𝒋𝒋𝒋𝒋𝒋𝒋
𝟏𝟏+𝒋𝒋𝑿𝑿𝒙𝒙𝑭𝑭 𝒋𝒋⁄

𝑲𝑲(𝒋𝒋;𝒙𝒙), (6) 

   
Where 
 

𝑲𝑲(𝒋𝒋;𝒙𝒙) =
𝟏𝟏 − 𝟐𝟐

𝟐𝟐𝟐𝟐𝒋𝒋 [𝟐𝟐 + 𝒋𝒋𝒃𝒃𝟐𝟐 + 𝒂𝒂𝟐𝟐
𝒋𝒋 + 𝟐𝟐(𝒂𝒂 + 𝒃𝒃)𝒋𝒋𝟐𝟐𝒋𝒋]

𝟏𝟏 − 𝟐𝟐(𝒃𝒃𝟐𝟐 + 𝒂𝒂𝟐𝟐)
𝒋𝒋𝟐𝟐(𝒋𝒋 + 𝒋𝒋𝒙𝒙𝒙𝒙𝑭𝑭) [𝟏𝟏 −

(𝒃𝒃 − 𝒂𝒂)(𝒙𝒙 + 𝒙𝒙𝑭𝑭)
𝒃𝒃𝟐𝟐 + 𝒂𝒂𝟐𝟐 + 𝟐𝟐𝒙𝒙𝒙𝒙𝑭𝑭

𝒃𝒃𝟐𝟐 + 𝒂𝒂𝟐𝟐]
 

 .  
When 𝒙𝒙 = 𝒙𝒙𝑭𝑭, expression (6) determines the input impedance of the structure. 
Analysis of expressions (6) shows that the frequency response of a mechanical impedance has two 
resonances and one antiresonance. The proper frequencies ( )

1,2
r  of this system are defined as 

 

𝒋𝒋𝟏𝟏,𝟐𝟐
(𝒑𝒑) = [𝟏𝟏 ± (𝟏𝟏 − 𝑸𝑸

𝑷𝑷𝟐𝟐)
𝟎𝟎.𝟓𝟓
]
𝟎𝟎.𝟓𝟓

𝑷𝑷𝟎𝟎.𝟓𝟓, (7) 
   

where ( ) ( ) = + + 
2 21 2P c M M a b J ; ( ) ( )= + 22Q c a b JM , and the antiresonance frequency ( )ar  

as 
 

𝒋𝒋(𝒂𝒂𝒑𝒑) = {[𝟐𝟐(𝒂𝒂𝟐𝟐+𝒃𝒃𝟐𝟐)
(𝒋𝒋+𝒋𝒋𝒙𝒙𝒙𝒙𝑭𝑭

] [𝟏𝟏 − (𝒃𝒃−𝒂𝒂)(𝒙𝒙+𝒙𝒙𝑭𝑭)
(𝒂𝒂𝟐𝟐+𝒃𝒃𝟐𝟐) − 𝟐𝟐𝒙𝒙𝒙𝒙𝑭𝑭

𝒂𝒂𝟐𝟐+𝒃𝒃𝟐𝟐]}
𝟎𝟎.𝟓𝟓

. (8) 
   

According to expression (6), a calculation for a mathematical model that is a structure in the form of 
model 1 shown in figure 2 a) and installed on two identical vibration isolators was made. 

Journal Akustika  VOLUME 39/April 2021 
 

 
 Page 3 of 7 

 
 

Fig. 1: Mathematical model of a vibroinsulated structure with a displaced center of mass (c.m.) 
 
After the transition to a complex form of recording, one will seek a particular solution of this system in 
the form of steady-state oscillation: 𝒗𝒗𝒙𝒙 = �̅�𝒗𝒙𝒙𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋, 𝝋𝝋 = �̅�𝝋𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋. 
Then from system (3) we obtain the following algebraic equations with unknowns �̅�𝒗𝒙𝒙 and �̅�𝝋 
 

(𝒋𝒋𝒋𝒋𝒋𝒋 + 𝟐𝟐𝟐𝟐
𝒋𝒋𝒋𝒋)𝒗𝒗𝑿𝑿̅̅̅̅ + [ 𝟐𝟐𝒋𝒋𝒋𝒋 (𝒃𝒃 − 𝒂𝒂 − 𝟐𝟐𝒙𝒙) − 𝒋𝒋𝒋𝒋𝒋𝒋𝒙𝒙] �̅�𝝋 = 𝑭𝑭

𝟐𝟐
𝒋𝒋𝒋𝒋 (𝒃𝒃 − 𝒂𝒂)𝒗𝒗𝑿𝑿̅̅̅̅ + { 𝟐𝟐𝒋𝒋𝒋𝒋 [𝒂𝒂

𝟐𝟐 + 𝒃𝒃𝟐𝟐 − (𝒃𝒃 − 𝒂𝒂)𝒙𝒙] + 𝒋𝒋𝒋𝒋𝒋𝒋} �̅�𝝋 = 𝒙𝒙𝑭𝑭𝑭𝑭
} (4) 

   
From equations (4), the complex velocity �̅�𝒗𝒙𝒙 = �̅�𝒗(𝒙𝒙) is expressed as 
 

𝒗𝒗𝑿𝑿̅̅̅̅ =
|𝑫𝑫𝟏𝟏 𝑫𝑫𝟐𝟐
𝑫𝑫𝟑𝟑 𝑫𝑫𝟒𝟒

|

|𝑫𝑫𝟓𝟓 𝑫𝑫𝟔𝟔
𝑫𝑫𝟕𝟕 𝑫𝑫𝟖𝟖

|
𝑭𝑭, (5) 

   
where D1=1; D2=c/(j𝒋𝒋) (b-a-2x)-jwMx; D3=xF; D4= c/(j𝒋𝒋) [a2+b2-(b-a)x]+ j𝒋𝒋J; D5= j𝒋𝒋𝒋𝒋 + 𝟐𝟐𝟐𝟐/(𝐣𝐣𝒋𝒋); 
D6=D2; D7=c/( j𝒋𝒋)(b-a); D8=D4. 
Expression (5) determines the transition impedance 𝒁𝒁𝒑𝒑𝒆𝒆𝒑𝒑 of the system at a point with a coordinate x 
in relation to the force 𝑭𝑭𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋 applied at the point 𝒙𝒙𝑭𝑭 as 𝒁𝒁𝒑𝒑𝒆𝒆𝒑𝒑 = 𝑭𝑭/�̅�𝒗𝒙𝒙, or after carrying out algebraic 
transformations of determinant (5): 
 

𝒁𝒁𝒑𝒑𝒆𝒆𝒑𝒑 = 𝒋𝒋𝒋𝒋𝒋𝒋
𝟏𝟏+𝒋𝒋𝑿𝑿𝒙𝒙𝑭𝑭 𝒋𝒋⁄

𝑲𝑲(𝒋𝒋;𝒙𝒙), (6) 

   
Where 
 

𝑲𝑲(𝒋𝒋;𝒙𝒙) =
𝟏𝟏 − 𝟐𝟐

𝟐𝟐𝟐𝟐𝒋𝒋 [𝟐𝟐 + 𝒋𝒋𝒃𝒃𝟐𝟐 + 𝒂𝒂𝟐𝟐
𝒋𝒋 + 𝟐𝟐(𝒂𝒂 + 𝒃𝒃)𝒋𝒋𝟐𝟐𝒋𝒋]

𝟏𝟏 − 𝟐𝟐(𝒃𝒃𝟐𝟐 + 𝒂𝒂𝟐𝟐)
𝒋𝒋𝟐𝟐(𝒋𝒋 + 𝒋𝒋𝒙𝒙𝒙𝒙𝑭𝑭) [𝟏𝟏 −

(𝒃𝒃 − 𝒂𝒂)(𝒙𝒙 + 𝒙𝒙𝑭𝑭)
𝒃𝒃𝟐𝟐 + 𝒂𝒂𝟐𝟐 + 𝟐𝟐𝒙𝒙𝒙𝒙𝑭𝑭

𝒃𝒃𝟐𝟐 + 𝒂𝒂𝟐𝟐]
 

 .  
When 𝒙𝒙 = 𝒙𝒙𝑭𝑭, expression (6) determines the input impedance of the structure. 
Analysis of expressions (6) shows that the frequency response of a mechanical impedance has two 
resonances and one antiresonance. The proper frequencies ( )

1,2
r  of this system are defined as 

 

𝒋𝒋𝟏𝟏,𝟐𝟐
(𝒑𝒑) = [𝟏𝟏 ± (𝟏𝟏 − 𝑸𝑸

𝑷𝑷𝟐𝟐)
𝟎𝟎.𝟓𝟓
]
𝟎𝟎.𝟓𝟓

𝑷𝑷𝟎𝟎.𝟓𝟓, (7) 
   

where ( ) ( ) = + + 
2 21 2P c M M a b J ; ( ) ( )= + 22Q c a b JM , and the antiresonance frequency ( )ar  

as 
 

𝒋𝒋(𝒂𝒂𝒑𝒑) = {[𝟐𝟐(𝒂𝒂𝟐𝟐+𝒃𝒃𝟐𝟐)
(𝒋𝒋+𝒋𝒋𝒙𝒙𝒙𝒙𝑭𝑭

] [𝟏𝟏 − (𝒃𝒃−𝒂𝒂)(𝒙𝒙+𝒙𝒙𝑭𝑭)
(𝒂𝒂𝟐𝟐+𝒃𝒃𝟐𝟐) − 𝟐𝟐𝒙𝒙𝒙𝒙𝑭𝑭

𝒂𝒂𝟐𝟐+𝒃𝒃𝟐𝟐]}
𝟎𝟎.𝟓𝟓

. (8) 
   

According to expression (6), a calculation for a mathematical model that is a structure in the form of 
model 1 shown in figure 2 a) and installed on two identical vibration isolators was made. 
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3. EXPERIMENTAL DATA

Experimental verification of the results obtained above was 
carried out on two kinds of models shown in Fig. 2. Model 1 is 
a cylindrical casing supported by stiffeners and massive rings 
located at the edges, model 2 is a cylindrical shell with massive 
rings located at the edges.

Fig. 3: Input dynamic mass module of model 1 at point 2

Fig. 4 shows the results of experimental determination and 
theoretical calculation of the input dynamic mass module  
Md = |Z/ω| of model 1 (Fig. 3 a) when excited by a harmonic for-
ce at points 1 (Fig. 4 a) and 2 (Fig. 4 b), respectively. Formulas 
(1) and (9) have been used.

Fig. 5 shows the results of experimental determination and 
theoretical calculation of the input dynamic mass module  
Md = |Z/ω| of model 2 (Fig. 3 b) when excited by a harmonic for-
ce at points 1 (Fig. 5 a) and 2 (Fig. 5 b), respectively. Formulas 
(1) and (9) have been used.

   (a)

   (b)
Fig. 4: Input dynamic mass module of model 1 at frequencies ff≤1

The ratio of stiffness of shock absorbers c to the casing mass 
M is c/M=150s2. The structure was excited in the radial direc-
tion by a harmonic force at point 2 at a distance xF from the 
center of mass of the object (Fig. 2 a).

   (a)

   (b)
Fig. 2: Design of models experimentally studied

The results of calculations in the form of a dependence 
|Z|/(ωM) on the excitation frequency f are presented in Fig. 3. 
Curve 1 shows option 1 of installing the casing on the vibra-
tion isolators when they were placed along the edges of the 
casing, and curve 2 – option 2, in which the left vibration isola-
tor was moved to a point located at a distance of 0.01 meters 
to the left of the structure center of mass. Curve 3 obtained 
experimentally with free suspension of model1 on strings is 
also plotted here.

Analysis of the measurement results and theoretical estima-
tes for this and other cases shows a good agreement between 
the results in the low-frequency region investigated. Moreo-
ver, it was found that the influence of the stiffness and place-
ment of vibration isolators on the measured impedance value 
is noticeable up to the boundary frequency fgr≤2/π(2c/M)-0,5 . 
At higher frequencies, up to the frequency f1 , which restricts 
the possibility of representing the structure as a model of a 
single solid body one can use the model of a freely suspended 
body. 

Thus, in the frequency range ffgr≤ ≤f1 , expression (6) is sim-
plified to the form

       (9)

describing the impedance of inhomogeneous freely sus-
pended structures, in particular, axisymmetric casings with an 
uneven mass distribution along the length of the casing (ribs, 
connecting rings, fixed devices, and so on). 
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, (9) 

   
 

describing the impedance of inhomogeneous freely suspended structures, in particular, axisymmetric 
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lized to the value ωM in the frequency range ffgr≤ ≤f1 are plot-
ted when the point of application of the driving force along 
the generatrix of model 2 from its left edge to the right is dis-
placed. The only common point between these two curves is 
the point corresponding to excitation to the center of mass. 
At all other points, the calculation estimates diverge the more 
significantly, the further from the center of mass the excitation 
point is located.

Fig. 6: Model of the input dynamic mass depending on the point 
of force application along the length of model 2

4. CONCLUSIONS

Considering the above, the following conclusions can be dra-
wn:
1. 1. The developed computational model (9) for determi-

ning the low-frequency transition and input impedances 
in a structure with an inhomogeneous mass distribution 
has a sufficient degree of adequacy in the specified fre-
quency range, which is confirmed by the agreement of 
the calculated and experimental characteristics of a num-
ber of casing structures.

2. The proposed model:
•	 allows determining the lower limit of the frequency 

range where you can experimentally determine the 
impedance of the structure installed on vibration 
isolators without fear of distortion caused by the in-
fluence of the latter;

•	 can be useful both for evaluating the reliability of 
experimentally obtained impedance characteristics 
of anisotropic structures, and for making theoreti-
cal estimates of the mechanical impedances of such 
structures in the frequency range .

3. The research carried out using the constructed compu-
tational model have shown that in the indicated low-fre-
quency region for casing structures, the inhomogeneity 
of the mass distribution significantly affects the magnitu-
de of both the input, and transient mechanical impedan-
ce.

In order to determine the effect of inhomogeneity in mass 
distribution, the same figures show curves 3 corresponding to 
the calculation of the low-frequency impedance according to 
expression (1).

If a structure with a uniform arrangement of mass along the 
length occurs, then expression (9) will take the form

         (10)

Note that accurate to specifying the origin of coordinates  
x and xF, expression (10) coincides with expression (1) given in 
[8] for a freely suspended homogeneous beam (where instead 
of x and xF, coordinates (x-1/2) and (xF-1/2) corresponding to 
the calculation of coordinates from the left edge of the beam 
are used).

   (a)

   (b)
Fig. 5: Input dynamic mass module of model 2 at frequencies ff≤1

Comparison of the results of calculations by expressions  
(9) and (1) with the data of the experimental determination of 
impedance characteristics shows that for the investigated ca-
sing structures, the calculation by formula (9) is in good agree-
ment with experiment while the results of calculations by for-
mula (1) or (10) not taking into account the mass distribution 
heterogeneity differ from the experimental values by about  
5–6 dB.

This is due to the difference in the intensity of the inertial 
resistance of a homogeneous and inhomogeneous structure 
to torsional vibrations, which are excited along with reciproca-
ting vibrations when excited by a force at a point that does not 
coincide with the center of mass of the structure.

In the investigated casing structures, the mass distribution 
was such that the moment of inertia of each of them was gre-
ater than that of a homogeneous structure equivalent in mass 
and dimensions. Therefore, their impedance being measured 
exceeded that for equivalent homogeneous bodies.

This is additionally illustrated in Fig. 6, where the curves of 
the calculation values of the input impedance module norma-
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Fig. 4: Input dynamic mass module of model 1 at frequencies  1f f  
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