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Preface

As far as underwater source localization is 
concerned the Matched Field Processing 
(MFP) is an effective method. Floating 
ship localization, submarine localization in 
military section and fish finding in civilization 
are considered as the main application of 
MFP. Besides, determining environmental 
parameters such as sound speed profile, 
bottom topography and array tilt are also 
developed.

Some methods such as empirical mode 
decomposition, adaptive MFP, compressive 
MFP and especially stochastic MFP using 
Riemannian geometry (RMFP) have been 
introduced recently in order to increase 
MFP’s reliability and resolution. It seems 
that the RMFP is the strongest candidate for 
the future development of MFP since it is 
inherited the strong foundation of both MFP 
and Riemannian Geometry. Surprisingly, not 
only the nature of curvature of sound wave 
but also the nature of MFP are exploited in 
RMFP. 

The aim of this monograph is introduce 
RMFP by considering the Riemannian 
distance instead of Euclidean distance. Two 
approaches of RMFP construction, i.e., iso-
metric mappings and direct Riemannian 
distance calculation are introduced.

The organization of this monograph is as 
follows. Two first chapters of this monograph 
revised the reader about the essential 
meaning of Gauss Curvature, Geodesic 
equation, iso-metric mapping in Riemannian 
Geometry and the state of the art of MFP. 
Chapter 3 presents Riemannian MFP. Chapter 
4 concludes the monograph with discussions 
about the performance of MFP.

This monograph is designed for graduated 
students, scientists and senior engineers who 
working in the field of underwater acoustic 
engineering.

We would like to thanks SACLANTC for 
providing access of SONAR array data. We 
also express our gratitude to University of 
Engineering and Technology (VNUH) for 
partial financial support this monograph. 
Finally, I deeply express my appreciate to my 
family, especially my father for their patient 
and love to me.
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CHAPTER 1. 
GAUSS THEOREM

The purpose of this chapter is provide the 
concept of line curvature in space, Gauss 
curvature and their quantities in view of 
differential geometry. In this chapter, the 
principles of forming the Geodesic equation 
and the iso-metric mapping in Riemannian 
Geometry are also introduced.

1. 1.  Line curve in space

The continuous curve parameterization [1-2]  
in Rn (n=2,3,..) is a continuous function , in 

which  I RÌ is an open interval with 
their limits   a b-¥ £ < £ ¥
Given the point P on the curve, the tangent 
vector at the point P is given by

       (1.1)
   

Given γ as continuous curve parameterization 
the line curvature at the point P in space is the 
rate of change of tangent vector at the point P.

The line curvature at the point P is given by  
[1-2]

     (1.2)

Where  ''Pg  is the second derivative of  g  at the 
point P. To justify the K(p) is not difficult for the 
reader.

Fig. 1. 1 illustrate the line curvature concept 
when comparing the line curvature with 
the maximum curvature possible, i.e., the 
curvature of a circular (K(p)=1/r with r is the 
radius of the circular). 

  : nI Rg ®

  '
P

s P

d
ds
gg

=

=

  
' ''

3'
( ) P P

P

K p
g g

g

´
=

Fig. 1. 1 Maximum line curvature in space

1. 2. The first fundamental form

The continuous parameterization of a surface 
in R3 is a continuous function   3:x U R® with 
  2U RÌ  is non empty open set.

Fig. 1. 2 The parameterization of a surface

For example, consider the point P with 
coordinate x(u,v). The image of P is point P’ in 
S=x(U) in new coordinate chart. Since x is not 
injection so there is a possibility of more than 
one coordinate of P’ in its image.

Given the surface parameterization and 
coordinate chart x, the tangent vectors which 
are forming the tangent space at the point P 
can be written as

/ ; /u vx dx du x dx dv= =    (1.3)
Assume that the tangent vector, w , at the 
point P with coordinate a and b so 

  u vax bxw = +     (1.4)
The first fundamental form is given by [1-6]

2 2 2 2, , 2u v u v u u v vI ax bx ax bx a x abx x b xw w= = + + = + +

     (1.5) 
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Or
2 22I a E abF b G= + +    (1.6)

Where

     (1.7)   

In view of matrix we can express the first 
fundamental form as follows

     (1.8)
 

The matrix of x mapping is   
E F
F G
æ ö
ç ÷
è ø   

       
     (1.9). 
 

    
1. 3. The second fundamental form

In differential geometry, the Gauss map as in 
Fig 1.3 maps a surface in R3 to the unit sphere 
S2. Namely, given a surface U laying in R3, the 
Gauss map is a continuous map   2:N U S®  
such that N(p) is a unit vector orthogonal to U 
at P, namely the normal vector to U at P.

Fig. 1. 3 Gauss map

The composition of x map and N, Gauss map 
has the Second fundamental form.

Let me show you the quantity measure of the 
Second fundamental form [1-6] as follows

  2, ,NII d dN dw w= =   (1.10)

.

.

.

u u

u v

v v

E x x
F x x
G x x

=

=

=

Since u vax bxw = +  it is defined

2 2 2( ).( ) 2

u
uu vu

v
uv vv

uv
uu vu uv vv uu uv vv

d ax bx
d ax bx
d d ax bx ax bx a x abx b x

w

w

w w

= +

= +

= = + + = + +

     (1.11)Then we obtain

2 2 2, . 2 . .uu uv vvII d N a x N abx N b x Nw= = + +

     (1.12)

Where  u v

u v

x xN
x x
´

=
´ is unit Normal vector of the 

surface 

U
If we set 

then the second fundamental form can be 
written as

     (1.13)
In view of matrix we can express the first 
fundamental form as follows

     (1.14)

The matrix of xoN mapping is 

    

     (1.15).

1. 4. Gauss curvature

The Gauss curvature, is considered as 
the extended of the line curvature in two 
dimension. Basically, the Gauss curvature 
is derived the first time by the very famous 
mathematician Carl Friedrich Gauss [1-6]. 

Given the surface parameterization and 
coordinate chart x, the first fundamental form 
is

  2 22I a E abF b G= + +   (1.16)

.
.
. .

uu

vv

uv vu

e x N
g x N
f x N x N

=

=

= =

  2 22II a e abf b g= + +

  ( ) ( )T e f
II a b a b

f g
æ ö

= ç ÷
è ø

  ( ) ( )T E F
I a b a b

F G
æ ö

= ç ÷
è ø

  
e f
f g

æ ö
ç ÷
è ø
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Where

     (1.17)

The second fundamental form is

     (1.18)
Where

     (1.19)

   It is defined the Gauss curvature, K(p), is ratio 
of the determinant of the second fundamental 
form to that of the first fundamental form  
[1-2].

     (1.20). 

     

     (1.21)

Gauss theorem:

The Gauss curvature K is intrinsic, it means 
that it can be expressed completely by the 
elements E,F, and G the first fundamental form 
and surface parameterization x.

Fig. 1.4 Gauss curvature

  
.
.
.

u u

u v

v v

E x x
F x x
G x x

=
=
=

  2 22II a e abf b g= + +

  
.
.
. .

uu

vv

uv vu

e x N
g x N
f x N x N

=
=
= =

  detII( )
det

e f
f g

K p
E FI
F G

æ ö
ç ÷
è ø= =
æ ö
ç ÷
è ø

  
2

2( ) eg fK p
EG F

-
=

-

1. 5. Geodesic equation

Let us introduce about the vibrational problem 
which going back to the 18th century and is the 
main work of Karen Uhlenbeck  around 1980 
[7-9]. 

We have a functional

     (1.22)
defined on functions u of one variable x. 

The Euler-Lagrange equation associated to 
the functional is given by

   
  

     (1.23)

The Euler-Lagrange equation is. 

Depending on the context, the functions 
would be required to satisfy suitable boundary 
conditions or, as in most of this article, might 
be defined on a compact manifold rather than 
a domain in Rn, and u might not exactly be a 
function but a more complicated differential 
geometric object such as a map, metric, or 
connection.

Fig.1.5 Critical point with a minimax sequence. 
The result is reproduced from [9]

One interprets   ( )ut , defined as in (1.23), as the 
derivative at u of the functional F on a suitable 
infinite dimensional space X and the solutions 

  '( ) ( , )F u u u dx= Fò

  
'

( )

( )

F u u dx

du
u dx u

d d t

t

=

¶F ¶F
= -
¶ ¶

ò
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of the Euler-Lagrange equation are critical 
points of F. If the functional F is bounded 
below one might hope to find a solution of 
the Euler-Lagrange equation which realizes 
the minimum of F on X. Fig 5 show finding a 
critical point with a minimax sequence.

The solutions to a variation problem in one 
dimension are geodesics in a Riemannian 
manifold.

Here we take N to be a compact, connected, 
Riemannian manifold and fix two points p, q in 
N. We take X to be the space of smooth paths 

w i t h , and the    
energy functional

     (1.24)

Where the norm of the “vector velocity”  gÑ is 
computed using the Remannian metric on N. 

The Euler-Langrange equation is the geodesic 
equation, in local co-ordinates [9-10],

     (1.25)
 

Where the “Christoffel symbols”  i
jkG  are given 

by well-known formula in terms of metric 
tensors and its derivatives. In this case, the 
variational picture works as well as one could 
possibly wish. There is a geodesic from p to 
q minimizing the energy. More generally, one 
can use minimax arguments and (at least if p 
and q are taken in general position) the Moose 
theory [10] asserts that the homology of the 
path space X can be computed from a chain 
complex with generators corresponding to 
geodesics from p to q.

1. 6. Iso-metric mapping

Considering a manifold M which consists of 
CSDM (Cross-spectral density matrix) matrices 
and is equipped with inner product gm on the 
tangent space TM(m). Given the inner product 
gm on TM(m), each point m that varies smoothly 
from point to point in the sense that if X and 
Y are differentiable vector fields on M, then 

  ( | , | )m m mm g X Y® is a smooth function [3,11].

  :[0,1] Ng ®

  
1

2

0

( )F g g= Ñò

  '' ' '

,
0i

i jk j k
j k

g g g- G =å

Iso-metric mapping [3,11]

Let the mapping   :f E M® where   ,m E m MÎ Î!!  
M is CSDM matrix manifold and  E!  is subspace 
of Euclidean space.

If the Riemannian metric on M is given by

        (1.26)
Where   , ( )Ma b T mÎ and c is matrix which is 
satisfied some rules in order to the necessary 
and sufficient that   , ( )Ma b T mÎ then   ( )MT m
and   ( )ET m! ! are isometric.

Suppose that we have two points   am  and   bm
on M. Parameterization of smooth curved 
path on M connecting   am  and   bm  is a smooth 
function   : Mg q !  in which   Rq Î and   q  is an 
open interval with their limits   a bq q q£ £ .

Fig. 1.6 An example of Iso-metric mapping

An example of iso-metric mapping is shown 
in Fig. 1.6. It is the mapping from the tangent 
space of a torus into the a tangent space of 
unit sphere. In general, the torus could be 
replaced by any kind of Riemannian manifold.

The length of the path between the two points 
is calculated as

      

     (1.27)

where   dmm
dq

¢ = , and   (m ,m )mg ¢ ¢  is an inner 
product in the tangent space,   ( )MT m , at m on 
M .

The Riemannian distance between the two 
points is defined as the length of the geodesic, 
i.e.,

                                                
 (1.28)

  , ,mg a b a c=

  ( ) ( , )
q

q

q¢ ¢= ò
b

a

m dl m g m m

  
[ ]

{ }
( ): ,

( , ) ( ( )
q q q

q=
!a b

R a b m M
d m m min l m

  (0) , (1) qpg g= =
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The length of a geodesic connecting   am
and   bm in M has the same length of geodesic 
connecting   am

!

and   bm
!

 in   E
!

 as a result of the 
iso-metric mapping.

Therefore, we can derive the Riemannian 
distance by Euclidean distance as follows

 

     (1.29)

  ( , ) ( , )R a b E a bd m m d m m= ! !
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CHAPTER 2. 
MATCHED FIELD PROCESSING

The aim of this chapter is introduce the 
Matched field processing (MFP). There are two 
approaches. In the first one, environmental 
parameters are bringing into the signal 
processing model so that MFP could be 
adaptive to the variation of the environment. 
In the second one, MFP is considered as a 
robust signal processing instead of optimum 
signal processing as usual in statistical signal 
processing.

2.1 The first approach of Matched field 
processing 

Let us introduce the subject of Matched field 
processing by considering the MFP as the 
signal processing method [1-8] which is 
embedded the environmental parameters as 
in Fig.1 as follows

Fig. 2.1  Basic components of MFP. The result 
is reproduced from [2]

From the Fig. 2.1 it is clear that the processor of 
MFP in general using two kinds of signal. The 
first signal is environmental information and 
the second signal is measured signal coming 
from a vertical, horizontal or cylindrical 
hydrophone array.

It is important to emphasis about the 
environmental information, we could collect 
as much as possible but at least the sound 
speed profile (SSP) must be achieved.

If we consider the deep ocean as a single duct 
with rms sea surface roughness   2ms = , and 
a totally absorbing bottom the SSP is depicted 
as follows

Fig. 2.2. Environmental parameters 
representing a single duct deep ocean sound-
speed profile, rms sea surface roughness, 
  2ms = , and a totally absorbing bottom. The 
result is reproduced from [2].

In reality, the reflecting bottom is made of 
sand or mud or a composite of sand and mud. 
The deep sediment  layer is over 500 m and 
has elastic property. Typical relative densities 
of those layers are illustrated as in Fig. 2.3 as 
follows

Fig. 2.3. Environmental parameters illustrating 
reflecting bottom consisting of a 100 m deep 
sediment layer over a 500 m deep elastic 
layer over an elastic half-space. s The result is 
reproduced from [2].
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The fact that, the ocean environment could 
vary from place to place. In some case, we 
have to deal with the double duct (double 
oceanic waveguides) as in Fig. 2.4 as follows

Fig. 2.4. Environmental parameters for double 
duct deep ocean sound-speed profile. Bottom 
is totally absorbing. The result is reproduced 
from [2].

The main idea here is MFP is not only 
processing the signal from the hydrophone 
arrays but also the signal from the propagation 
models. 

2.2 Propagation models

2. 2. 1. The Normal Mode

Staring from Helmholtz equation in two 
dimensions with sound speed c and density ρ 
depending only on depth z [9-14]

 

    

      (2.1)

where sz is source depth, z is depth and r is 
distance.

Using separation of variables   (r, z) (r).V(z)y =F
we obtain the modal equation

  
2

2
2

( )1( ) [ ] [ ] ( ) 0
( ) ( )

m
rm m

dV zdz k V z
dz z dz c z

wr
r

+ - =  

     (2.2)

  
2

2

( ) ( )1 1( ) ( ) ( )
( ) ( ) 2

sr z zr z
r r r z z z c z r

d dy y wr y
r p

-¶ ¶ ¶ ¶
+ + = -

¶ ¶ ¶ ¶

with the boundary conditions such as 

  (0) 0, 0z D
dVV
dz == =  

       
     (2.3).

The former condition implies a pressure 
release surface and the latter condition is from 
a perfect rigid bottom. The modal equation 
that is the center of the NM, has an infinite 
number of modes. Each mode represents 
by a mode amplitude   ( )mV z  and a horizontal 
propagation constant   rmk . ( )mV z and   rmk  are 
also called eigenfunction and eigenvalue respectively

Noting that the modes are orthonormal, i.e.,

  0

2

0

( ) ( ) 0, m n
( )

( ) 1
( )

D
m n

D
m

V z V z dz
z

V z dz
z

r

r

= ¹

=

ò

ò

 

     (2.4) 

Since the modes forms a complete set, the 
pressure can represents as a sum of the 
normal modes

  
1

( , ) ( ) ( )m m
m

r z r V zy
¥

=

= Få  

     (2.5) 
After some manipulations, we obtain

  1
0( , ) ( ) ( )

4 ( ) m s rm
s

ir z V z H k r
z

y
r

=  

     (2.6)

where   10H  is the Hankel function of the first 
kind.

Substitute (6) back to (5) we have

  1
0

1
( , ) ( ) ( ) ( )

4 ( ) m s m rm
ms

ir z V z V z H k r
z

y
r

¥

=

= å  

     (2.7)

Finally, using the asymptotic approximation 
of the Hankel function, the pressure can be 
written as

  /4

1
( , ) ( ) ( )

( ) 8

rmik r
i

m s m
ms rm

i er z e V z V z
z r k

py
r p

¥
-

=

» å  

       
     (2.8)
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2. 2. 2.  The Parabolic Equation

Starting from the Helmholtz equation in the 
most general form [12]

  2 2 2
0 ( 1) 0k ny yÑ + - =     (2.9)

where n is the refraction index of the medium 
and k0 is the wavenumber at the acoustic 
source.

In cylindrical coordinate, (1) becomes

            (2.10)

in which the subscripts denote the order of 
derivative. 

From the assumption of Tappert [13-14],   y  is 
defined as

  ( , ) ( , ) ( )r z r z V ry =F      (2.11)
where z denotes depth and r denotes distance.

Thus (2.10) becomes the system of equations 
as follows

  2 2
0

1 2 ( 1) 0rr r r zzV k n
r V
æ öF + + F +F + - F =ç ÷
è ø

     
(2.12) 

and  

  2
0

1 0rr rV V k V
r

+ + =     (2.13)

The root of (13) is a Hankel function with its 
approximation as

  0( )1 4
0 0 0

0

2( )
i k r

rV H k r e
k r

p

p
-

= =    

     (2.14)

After some manipulations, (2.12) becomes       

  2 2
0 02 ( 1) 0r zzik k nF -F + - F =

       
       
     (2.15),

i.e. a parabolic equation.

Taking the Fourier transform both side of (2.15) 
in z domain obtained

  2 2
0

1 ( 1) 0rr r zz k n
r

y y y y+ + + - =

  2 2 2
0 02 ( 1) 0r zik k k nF - F + - F =     (2.16)

Rewrite (2.16) in simpler form as

  
2 2 2
0

0

( 1) 0
2

z
r
k n k

ik
- -

F + F =             (2.17)

Thus, from [9] we have  

  
2 2 2
0

0
0

( 1) ( )
2

0( , k ) ( ,k )e
zk n k r r

ik
z zr r

- - -
-

F =F

where   0( ,k )zrF is the initial value of the source.

Taking the Inverse Fourier transform both side 
of (2.18) obtained

  
2

20
0

( 1) 22
0( , z) ( ,k )e

z

z

i rkki n r ik ik z
z zr e r e dk

- D¥
- D

-¥

F = Fò        

      
(2.19) 

where   0r r rD = - .

Finally, we arrived

  { }
2

20
0

( 1) 212
0( , z) e ( , z)

zi rkki n r ikr e r
- D

- D -
ì üï ïF = Á Á Fí ý
ï ïî þ

 

    

     (2.20). 

This form is called Split-Step Fourier transform.

2. 2. 3.  Simulation Results

In this simulation, Tonkin gulf is used as Pekeris 
waveguide model with its sound velocity 
which is measured from [15]. Thuc was carried 
out many sound speed measurements which 
were reported in his monograph. On the basis 
of Thuc’s results, the medium parameters of 
Tolkin gulf are given in the Table 2.1 as follows

Table 2.1. The medium parameters

Paremeter Value
Ocean depth 100 m
Sound speed in winter c(z)=1500+0.3z (m/s)

Bottom
Sand, ρ1=2000 kg/m3

c1=1700 m/s
Point source f=250 Hz, h= 99 m
Noise Gaussian, SNR=3dB

In Table 2.1, c denotes sound velocity whereas 
ρ indicates medium density.

(2.18)
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The transmission loss factors (TLs) of NM and 
PE are shown [16] in Fig. 2.5 and Fig. 2.6. 

Fig.2.5. Transmission loss factors of NM and 
PE  with range up to 15 km, noiseless case.

Fig. 2.6 Transmission loss factors of NM and 
PE with range up to 15 km, SNR=3dB.

From Fig. 2.5 and Fig. 2.6 we can see clearly 
that the TLs of both NM and PE with range up 
to 15 km far from the acoustic source.  In the 
conditions of this simulation, this TLs are stable 
after hundreds of simulations. Further, there is 
the agreement of TLs between NM and PE.  

In the first case (noiseless case), from Fig. 2.5, 
the TL of PE seems reducing to distance more 
slightly than the TL of NM. It is basically, could 
be thought of the nature of range dependence 
of PE approach. 

In the second case (when SNR of 3 dB), from 
Fig. 2.6, the agreement of TLs of both methods 
is more consistent since the signal level in this 
case is higher than the noise level and it is 
compensated for a long range transmission.

The computation of PE is slightly more than 
NM (it is not shown here).

2.3 The second approach of Matched field 
processing 

Let us introduce the second approach of 
Matched field processing which is called 
robust signal processing [17-19].  Fig. 2.7 is an 
explanation of the concept of robust signal 
processing.

Fig. 2.7. Concept of robust detection. The 
result is reproduced from [19]

In an ideal situation the system gain from 
robust signal processing is less than that 
of optimum signal processing. But robust 
signal processing is not sensitive to model 
mismatch, i.e., in the case of model mismatch, 
the system gain of robust signal processing is 
larger than that of optimum signal processing, 
which is what we can expect most frequently.

The following explanation is come from [19]

Suppose H is a possible sonar design space, 
the element of this space is the possible signal 
processing method. Q is a set of consisting 
of various models. Define a metric function 

  ( , ), ,M h q h H q QÎ Î , which is used to measure 
the system performance using model q and 
signal processing method h.
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The traditional sonar design is for fixed   0q QÎ .  
Find   0h HÎ such that

  0 0 0( , ) max ( , )
h H

M h q M h q
Î

=   (2.21)
That means 0h H�  is the optimum signal 
processing method for model   0q QÎ .

If the real ocean environment model   0q
is varying, it can be changed in a subset P 
of Q, i.e., the element of model   p P QÌ Î
. In this situation, how to choose the signal 
processing method? A reasonable strategy 
is to use the maximum-minimum method in 
game theory. That means for any   h HÎ find q, 
which minimizes M(h,q). An then find h, which 
maximizes the value of   min ( , )

q P
M h q

Î
, i.e.,

  maxmin ( , )
q Ph H
M h q

ÎÎ    (2.22)
The robust signal processing method,   Rh , is 
the signal processing method which satisfies 
the following equation

  min ( , ) maxmin ( , )Rq P q Ph H
M h q M h q

Î ÎÎ
=

 (2.23)

2.4 Properties of Matched Field Processing

The properties of matched field processing 
are described detail in [2]. Fig. 2.8 illustrate 
those properties.

Fig. 2.8. Properties of Matched Field Processing 

Among them [20-25], the popular processors 
are linear, MVDR, matched mode, maximum 
entropy, etc., The linear processor is 
considered as the base for the comparison to 
other processors.

When the expert involves into the matched 
field processing, one have to cope with 
the computational danger such as matrix 
inversion or sampling of the cross spectral 
matrix coming from measured data. The model 
mismatched is always the case happening in 
reality and it affected the system performance 
in vary large scale.

The noise in reality is considered as color 
and broadband noise but is not uniform, 
homogeneous and isotropic as normal 
assumption.

In term of the application, MFP is the 
most effective way to underwater source 
localization. The other application are 
determine the environmental parameters 
such as sound speed profile and water, 
sediment densities, etc.,

Since it is inverse problem so we can exploit 
the method as a tool for model evaluations 
which including ray, normal mode and 
parabolic approximation model.
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CHAPTER 3. RIEMANNIAN 
MATCHED FIELD PROCESSING

Let us introduce the class of Matched Field 
Processing, namely Riemannian Matched 
Field Processing (RMFP), by considering the 
Riemannian distance instead of  Euclidean 
distance. It is the purpose of this chapter 
and of this monograph. Therefore, not only 
the nature of curvature of sound wave in 
Chapter 1 but also the nature of Matched Field 
Processing in Chapter 2 are exploited in RMFP. 
Two approaches of RMFP construction, i.e., 
iso-metric mappings and direct Riemannian 
distance calculation are introduced.

3.1 RMFP based on iso-metric mapping

The fact that Cross Spectral Density Matrices 
(CSDMs) which are not randomly but Hermite 
and positive definite, form a manifold that 
each CSDM is a point on it.

Considering a manifold M which consists 
of CSDM (Cross-spectral density matrix) 
matrices and is equipped with inner product 
gm on the tangent space TM(m). Given the inner 
product gm on TM(m), each point m that varies 
smoothly from point to point in the sense that 
if X and Y are differentiable vector fields on M, 
then   ( | , | )m m mm g X Y® is a smooth function.

Suppose that we have two points   am  and   bm
on M. Parameterization of smooth curved path 
[1-3] on M connecting   am  and   bm  is a smooth 
function   : Mg q !  in which   Rq Î and   q  is an 
open interval with their limits   a bq q q£ £ . In 
general, the length of the path between the 
two points is calculated as 

       
     (3.1)

where  dmm
dq

¢ = , and   (m ,m )mg ¢ ¢  is an inner 
product in the tangent space,   ( )MT m , at m on 

  ( ) ( , )
q

q

q¢ ¢= ò
b

a

m dl m g m m

M.The Riemannian distance between the two 
points (Fig. 3.1)  is defined as the length of the 
geode sic, i.e.,

                                
 (3.2)

Fig. 3.1 Riemannian distance between 
CSDM matrices of two signals. The result is 
reproduced from [1]

Theorem 1: The condition of existing the 
iso-metric mapping

Let the mapping   :f E M® where   ,m E m MÎ Î!! ,  
M is CSDM matrix manifold and   ,m E m MÎ Î!!  is subspace 
of Euclidean space.

If the Riemannian metric on M is given by

  , ,mg a b a c=
      (3.3)

Where         and c is matrix which is 
satisfied some rules in order to the necessary 
and sufficient that   , , ma b a c g= = then 
  ( )MT m and  ( )ET m! ! are isometric.

Fig. 3.2 An example of iso-metric mapping

An example of iso-metric mapping is shown 
in Fig. 3.2. It is the mapping from the tangent 
space of a torus into the a tangent space of 
unit sphere. In general, the torus could be 
replaced by any kind of Riemannian manifold.

  
[ ]

{ }
( ): ,

( , ) ( ( )
q q q

q=
!a b

R a b m M
d m m min l m

  , ( )Ma b T mÎ
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The length of a geodesic connecting  am and 
 bm in M has the same length of geodesic 

connecting  am and  bm  in  E
!

 as a result of the 
iso-metric mapping.

Therefore, we can derive the Riemannian 
distance by Euclidean distance as follows

 ( , ) ( , )R a b E a bd m m d m m= ! !   (3.4)
The RMFP classifications [4-6] based on different 
iso-metric mappings as in Fig. 3.3 as follows

Fig. 3.3 Classification of RMFP based on 
different iso-metric mappings

There are 4 kinds of iso-metric mappings 
corresponding to 4 kinds of Riemannian 
Matched Field Processing as follows [2,4]

 
!

! !1
( , ) ( ) ( ) 2 ( )= + -! !

s s
s s d p pp p

p
r z argmin tr R tr R tr R R

  
     

     
(3.5)

 
!

! !2

1/2 1/2( , ) ( ) ( ) 2 ( )= + -! !
s s

s s d p pp p
p

r z argmin tr R tr R tr R R

                                                      (3.6)

 
!

3

2( , ) = å! !
s s d k

kp
r z argmin ln λ

  (3.7) 

where  kl  is eigenvalues of  
!

1-

sp p
R R

 
!

! !

2 2( , ) [( ) ] [( ) ] 2 [ ( ) ( )]= + -! !
SIM s s

s s d p pp p
p

r z argmin tr sinR tr sinR tr sin R sin R                       

     (3.8)

Where  s
Ù

r  is the estimated range of the source, 
 s

Ù

z is the estimated depth of the source, 
 ( , )s s

Ù Ù Ù

=p r z  is true source coordinate,  
sp

R is 
CSDM of collected data and  pR is CSDM of 
modeled field replicas.

3. 2. 3.2 RMFP based on direct Riemannian 
distance calculation

The fact that stochastic Matched Field 
Processing (SMTP) are derived on the basis 
of Riemannian distance (RDs) which were 
calculated using isometric mappings (IMs) 
[2,4].

If an IM does not exist, we must solve geodesic 
equations directly to find the geodesic 
distance.

The classification of RMFP based on directed 
Riemannian distance [5-6] is depicted in 
Fig.3.4 as follows

Fig. 3.4 Classification of RMFP based on 
directed Riemannian distances

There are two kinds of Direted RMFP i.e., on the 
basis of spherical spreading and of cylindrical 
spreading of underwater sound wave.

After solving the geodesic equations directly 
with assumption of spherical and cylindrical 
spreading, we found that the geodesic 
distance in the fashion of great circle (Fig. 3.5) 
for spherical spreading and in the fashion of 
helix (Fig. 3.6) for cylindrical spreading.

For detail of geodesic distance calculation, 
we referred the reader to the references [5-6].

Spherical Spreading [5]

First step:

The Riemannian matched field processor 
based on Riemannian geometry is received 
by obtaining the space coordinates of data 
replicas which are scanning over all modeled 
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field replicas position  ( , )s s

Ù Ù Ù

=p r z  with a subject 
constraint of minimization of Riemannian 
distance as follows

 
!

! !( , ) argmin ( ) ( ) 2 tr( )
s s

r z tr tr= + -p pp p
p

R R R R! !

  

     (3.9)
Second step: 

Now, on the basis of the outcome of directed 
Riemannian distance, we found that the 
geodesic distance of Spherical spreading is 
preferred to Great circle distance. This mean 
that

 

min 1

1

2 2

1

1

min( , )

( ) ( ) 2 ( )

( ( ) ( )) (cos cos )

( ) sin .sin[cos (cot )]

( , ) argmin( , )

s s
s s

Great Circle

Great Circle

s s Great Circle

d d d

d tr tr tr

d R f f

f g

r z d d

q q q q

q q q

Ù Ù

Ù

Ù Ù

-

Ù Ù

=

= + -

= - + -

=

=

p p
p p

p

R R R R
  

     (3.10)

where

 
R radius of sphere

parameterization of modeled data

parameterization of measurement data

q

q
Ù

=
=

=

Fig. 3.5 The great circle (red line) between two 
fix points  ( , )a bm m  on the surface of the 3D 
sphere.

Cylindrical Spreading [6]

First step:

The Riemannian matched field processor 
based on Riemannian geometry is received 
by obtaining the space coordinates of data 
replicas which are scanning over all modeled 
field replicas position  ( , )r z

Ù Ù Ù

=p  with a subject 
constraint of minimization of Riemannian 
distance as follows

 
!

! !( , ) argmin ( ) ( ) 2 tr( )
s s

r z tr tr= + -p pp p
p

R R R R! !

 

      (3.9)
Second step: 

Now, on the basis of the outcome of directed 
Riemannian distance, we found that the 
geodesic distance of Cylindrical spreading is 
preferred to Helix distance. This mean that

             (3.11)

where

Fig.3.6 The helix (red line) on the surface of 
the 3D cylinder.

 

min 1

1

2 2

1

min( , )

( ) ( ) 2 ( )

( cos( ) cos( )) ( )

( , ) argmin( , )

s s
s s
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Helix

s s Helix

d d d

d tr tr tr

d D t D t ht h t

r z d d

Ù Ù

Ù

Ù Ù

Ù Ù

=
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D outer radius of Helix
h pitch length
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t parameterization of measurement data
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CHAPTER 4. PERFORMANCE OF 
RIEMANNIAN MATCHED FIELD 
PROCESSING

In Chapter 2 the Matched Field Processing 
was treated as a robust signal processing. 
In Chapter 3 the Riemannian Matched 
Field Processing was considered in view of 
Riemannian Geometry. In this Chapter the 
Riemannian Matched Field Processing  are 
continued but are extended to its  performance. 
Following a section of input acoustic data, the 
performance of conventional Matched Field 
Processing is introduced. This is followed 
by a discussion of the performance of 
Riemannian Matched Field Processing using 
vertical hydrophone array as well as circular 
hydrophone array and cylindrical hydrophone 
array.

4. 1. Input Acoustic Data

Passive array data SONAR from SACLANTC1993 
North Elba experiment available in Internet 
was used for processing [1].The vertical 
underwater acoustic array data was collected 
in shallow-water off the Italia west coast by 
the NATO SACLANTC Center in La Spezia, 
Italy. The original SACLANTC time series has 
been converted to a series of MATLAB .mat 
files each of which contains a matrix “dat” 
that is 48 sensors by 64K data points long. 
Each file represents about 1 minute of data. 
The vertical array consists of 48 hydrophones 
with spacing 2 m between elements at total 
aperture length 94 m (18.7 m to 112.7 m in 
depth). The source emitted PRN signal with 
center frequency of 170 Hz.

The Sound Speed Profile (SSP) from [1] is 
described in Fig. 4.1 as follows.

Fig. 4.1 SSP of SACLANTC 1993 North Elba

4. 2. Performance of Conventional   
 Matched Field Processing

Fig. 4.2 is obtained from conventional MFP in 
which only one modeled field and one replica 
of SONAR array data were used. It should be 
noted that the data is from SACLANTC and 
SNR level is -3 dB and the number of snapshot 
is greater than 20 samples  It can be seen that 
the true source can be detected at depth of 
60 m and range of 6000 m. 

Fig. 4.2 a): Ambiguity surface of conventional 
matched field processing (one modeled 
field and one data replica, SNR=-3dB, No of 
snapshot>20 samples in 3 dimensions. The 
result is reproduced from [6].
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Fig. 4.2 b): Ambiguity surface of conventional 
matched field processing (one modeled field 
and one data replica, SNR=-3dB, No of 
snapshot>20 samples in 2 dimensions. The 
result is reproduced from [6].

4. 3. Performance of Riemannian Matched  
 Field Processing

4. 3. 1. Vertical Hydrophone Array (VHA)

The simplest possible example of a 
hydrophone array is vertical hydrophone array. 
The geometry of a vertical hydrophone array 
with 8 iso-tropic elements and its directivity 
are depicted as in Fig 4.3 as follows

Fig. 4.3 The geometry of a vertical hydrophone 
array with 8 iso-tropic elements and its array 
factors

Each simulation uses 10 replicas of SONAR 
array data which provided by SACLANC 
and SNR level of 10 dB and the number of 
snapshot is greater than 30 samples. Twenty 
modeled field replicas are obtained from 
variable sound speeds that changed to depth 
according to SSP as depicted in Fig. 4.1 (In 
reality modeled field replicas could be caused 
from other factor such as internal-wave, 
bottom parameter mismatch and others). 

From Fig. 4.4 it can be seen that the true 
source can be detected at depth of 60 m 
and range of 6000 m if 20 modeled field 
replicas and 10 data replicas were used for 
the proposed Riemannian matched field 
processor. In Fig. 4.5 the performance of 
the proposed Riemannian matched field 
processor used only 6 modeled field replicas 
shows that beside the true source location 
there are a number of spurious peak locations 
which are corresponding to ocean variability 
or mismatch conditions. Since the true source 
location is higher than other spurious peak 
locations, one can find it. However, we could 
not detect the source in the case in Fig. 4.6 
when only 3 modeled field replicas were used 
and all peak location are almost equally.  It 
is always the case of MFP when the number 
of modeled field replicas could not provide 
enough fluctuation of ocean environment.
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Fig. 4.4 : Riemannian ambiguity surface for 
20 modeled field replicas and 10 data replicas, 
SNR=10dB, No of snapshot> 30 samples. The 
result is reproduced from [5]

Fig. 4.5: Riemannian ambiguity surface for 
6 modeled replicas and 10 data replicas, 
SNR=10 dB, No of snapshot>30 samples. The 
result is reproduced from [5].

Fig. 4.6: Riemannian ambiguity surface for 
3 modeled replicas and 10 data replicas, 
SNR=10dB, No of snapshot>30 samples. The 
result is reproduced from [5].

4. 3. 2. Circular Hydrophone Array

The array factor of Circular Hydrophone Array 
of 32 elements is iso-tropic, symmetrical is 
depicted in Cartesian coordinate in Fig. 4.7 as 
follows.

Fig. 4.7 The array factor of Circular Hydrophone 
Array of 32 elements.
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4. 3. 3. Cylindrical Hydrophone Array (CHA)

The geometry of a cylindrical hydrophone 
array of MxN elements is shown in Cartesian 
coordinate  in Fig. 4.8 as follows

Fig. 4.8. The geometry of cylindrical 
hydrophone array of MxN  elements (each ring 
has M elements)

When combining 10 rings in Z-axis with each 
ring spaced by λ/2 (half of wave length) we 
obtain the cylindrical hydrophone array of 
32x10 elements. The array factor of the array 
is simulated and depicted in Cartesian 
coordinate as in Fig. 4.9 as follows.

Fig. 4.9 The array factor of cylindrical 
hydrophone array of 32x10 elements. The 
result is reproduced from [7]

The range and the depth of the source is 
estimated with the same results which is 
obtained using the vertical hydrophone array 
as in Part 4.3.1.

In addition, the bearing accuracy of circular 
array is the same form of linear array [7]. So if 
we use a CHA of 32x10 elements, the bearing 
accuracy up to 

Fig. 4.10 Bearing accuracy of circle 
hydrophone array (N=64 elements). The result 
is reproduced from [7].

4. 4. Conclusion

In term of robust signal processing the 
criteria performance of RMFP is not mean 
square error of the true source location 
but the system gain of the robust signal 
processing. By discussion the capability of 
RMFP  in this chapter we may conclude that 
it can be adaptively to the mismatch cases 
more than the conventional MFP. Obviously, 
with their strong foundation both of MFP and 
Riemannian Geometry, we believed RMFP will 
be the future of MFP in the context of lack of 
acoustic data (It means that we not consider 
the case of having big acoustic data or 
exploiting AI applications).

 03 / 80 9 / 80 0.1opt dBq q» D = =
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