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2. MAIN PROVISIONS 

The simplest equation describing wave processes in media is 
the one-dimensional wave equation, which is also often called 
the string vibration equation [2,3,4]. It allows one to describe 
the development of wave phenomena, in particular, the vibra-
tion of particles during mechanical deformation of an elastic 
medium. Its generalization to multidimensional cases allows 
one to describe waves in membranes and solids, the propa-
gation of sound vibrations in liquids and gases, and also finds 
application for describing electromagnetic phenomena. A fe-
ature of the course of wave processes is the transfer of ener-
gy without transfer of the substance itself. In particular, when 
considering the vibration of a string, the unknown function 
entering into it describes the deviation of the points of the 
string from the equilibrium position. For linear wave pheno-
mena, the sequence of the development of the process in time 
is characteristic, that is, the newly arrived state of the system 
is determined by the previous states, it is this property that is 
reflected in the application of numerical solution procedures. 
The most frequently used iterative algorithms are based on se-
quential consideration of individual states, where several time 
layers preceding the current one are connected by equations. 
Depending on the order of the finite-difference approxima-
tion of the derivatives, the number of connected space-time 
layers in the problem may differ, depending on the required 
solution accuracy. However, the number of simultaneously 
taken into account time layers cannot be less than two, which 
is determined by the order of the derivative of the function 
with respect to time entering into the wave equation.

In contrast to numerical procedures, when using analytical 
methods, the solution of the problem can be carried out im-
mediately over the entire space-time domain. In particular, 
the application of the Green‘s function method for the wave 
equation makes it possible to find a solution to the problem 
for each moment of time. But within the framework of only 
an analytical approach, it can be difficult to take into account 
areas with complex geometry; therefore, the construction of 
a numerical-analytical procedure is highly desirable and will 
simplify the consideration of boundary conditions.
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1. INTRODUCTION

The simplest method for the numerical solution of wave pro-
blems is the finite difference method [1], which allows one to 
solve equations in spaces of different dimensions. The most 
famous are explicit and implicit algorithms for solving. The 
use of explicit algorithms (one of the implementations of 
which is the Euler method), despite their simplicity, encoun-
ters a number of difficulties, one of which is rather strict re-
strictions on the sampling step in time. The application of the 
Euler method consists in sequential iterative calculation of the 
unknown values of the function at the nodes of the finite-dif-
ference spatial grid based on the previously calculated values 
of the function, but located at layers earlier in time. Implicit 
algorithms are more stable, but their application requires the 
solution of a system of equations, but presented the require-
ments for time steps in these algorithms are much softer. A 
more progressive, but slightly more resource-intensive, repre-
sentative of numerical methods, which allows one to obtain a 
numerical solution of the wave problem, is the Euler method 
with recalculation („predictor-corrector“). The implementation 
of which presupposes the initial solution of the problem using 
the Euler method and subsequent refinement, that is, in fact, 
it requires not one, but two steps in one period of time. In the 
classical numerical procedure, there is a transition from the ini-
tial continuous problem to its finite-difference analogue, both 
spatial and temporal coordinates are discretized, that is, there 
is a transition to a finite system of algebraic equations with the 
desired values of the unknown function at the grid nodes. In 
both explicit and implicit solution schemes, it is required to 
perform sequential traversal of all temporal layers, from ear-
lier to later layers. In contrast to numerical methods, the use 
of an analytical approach allows you to immediately obtain a 
solution at the right moment in time, but obtaining analytical 
solutions for areas with complex geometry is difficult throu-
ghout the space-time domain. Theoretically, the advantages 
of numerical and analytical methods can be combined using 
hybrid numerical-analytical methods for solving wave pro-
blems, where, for example, disctization in time is performed, 
while the solution is sought analytically in the coordinate. This 
article is devoted to one of the possible implementations of 
this approach.
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Let us perform a finite-difference discretization of the pro-
blem in time, assuming that the derivative of the function with 
respect to the x coordinate can be found analytically and assu-
ming the function p (t, x) to be equal to zero:

              (2)
where 
u[i + 1](x) is the solution vector corresponding to the [i + 1] 

time layer, 
u[i](x1)       is the solution vector corresponding to the i-th time 

layer, and 
u[i-1](x)   - solution vector corresponding to [i-1] time layer.

Moving all the terms related to the layer [i + 1] to the left side 
of the equality, we get:

              (3)

Assuming that the right-hand side is constant for the layer  
[i + 1], since it includes the vectors u[i-1](x0) -2u[i](x1) located 
on the previous time layers, we will solve this equation using 
the method Green‘s functions.

Fig. 1: Applying a time-step procedure to solving a  
time-dependent problem

The article assumes that the boundary conditions of 
the problem are permanent fixation at the ends of the 
considered spatial region and the boundary conditi-
ons are not subject to change over time. Then the expre-
ssion for the Green‘s function for the linear expression  
ht2v2diff (diff (u [i + 1], x2), x2) -u [i + 1] (x2) will have the form:

 
                                  (4)

where 
x2 is the spatial coordinate corresponding to the [i + 1] time 

layer, and 
y    is the integration variable included in the integral represen-

tation of the solution to the differential equation,
is the Heaviside function.

The article illustrates the possibility of using a numerical-
-analytical solution on the example of a one-dimensional 
wave equation. The solution plots illustrate the reflection of 
the wave from the boundaries of the computational domain, 
which consists in the amplification and attenuation of the 
wave amplitudes at different points of the domain at diffe-
rent times, as well as automatic satisfaction of the boundary 
conditions, that is, the problem of so-called „contour points“ is 
removed. The Green‘s function itself is constructed taking into 
account the boundary conditions of the considered problem.

The perturbation of the string that arises at the initial mo-
ment of time sequentially propagates over time, captures 
more and more sections of the string, reaches the points of 
attachment with the specified boundary conditions, and, re-
flected from the boundaries of the region, again propagates 
inside the computational domain.

The article deals with the propagation of linear waves. A 
much more complex phenomenon is the propagation of non-
linear waves, while in the medium under the influence of the 
wave, the properties of the medium itself change, and this, 
in turn, changes the properties of the wave. In particular, the 
work [5] is devoted to the problem of propagation of nonli-
near waves.

3. FORMULATION OF THE PROBLEM

3.1. Basic relations describing the propagation of linear 
waves in a string 

As is known [2, 3], in the case of wave propagation in a 
string, only transverse waves are observed, while long waves 
are absent.

Let the function u (x, t) be the deviation of the string from 
the OX axis at the point x at the time t. Based on the d‘Alem-
bert principle, one can derive an equation for the vibrations of 
a string, which, according to [6], has the form:

               (1)

where 
u          is the deviation of individual points of the string, is the 

time, 
diff (diff (u, t), t) is the double differentiation of the function of 

the deviation of the points of the string in time, 
v2          is the wave speed, 
p (x, t) is some function of external influence.

The description of the derivation of this equation and the 
quantities included in it is given in the numerous educational 
literature on the equations of mathematical physics [4], [6]. 
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p (x, t) is some function of external influence. 
 
The description of the derivation of this equation and the quantities included in it is given in the 
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Let us perform a finite-difference discretization of the problem in time, assuming that the derivative of 
the function with respect to the x coordinate can be found analytically and assuming the function p (t, 
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where x2 is the spatial coordinate corresponding to the [i + 1] time layer, and y is the integration 
variable included in the integral representation of the solution to the differential equation, θ(x) is the 
Heaviside function. 
 
This expression is obtained using the Maxima system of symbolic-analytical calculations, taking into 
account a given differential operator and given boundary conditions, which, according to the 
conditions of the problem under consideration, do not depend on time. The appearance of a three-
dimensional graph of the Green's function is shown in Fig.2:  
 
 
Fig. 2: 3D plot of Green's function on [i + 1] time layer  
 
For a more detailed display of the topology of the Green's function, an isofield can be constructed, on 
which the trace of the Dirac delta function is clearly visible in the form of a white colorless stripe passing 
along the diagonal (Fig. 3) 
 
 
Fig. 3: Green's function isofield at [i + 1] time level  
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period, the dependence 4 (0.25- (x-0.5) 2) is accepted, and for the time sampling step ht = 0.125 sec. 
moment, the dependence 4.4 (0.25- (x-0.5) 2) is adopted. The graphs of the initial conditions are shown 
in Fig. 4: 
 
 
Fig. 4: Graphs of initial conditions on [i-1] and [i] time layer  
 
As can be seen from the presented graphs, the boundary conditions in the coordinate are satisfied for 
both time layers. 
The expression for the derivative given at the initial moment of time can be found using the standard 
finite-difference approximation of the function: 
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where u[1](x1) is the solution vector corresponding to the [1]-th time layer, u[0](x0) is the solution 
vector corresponding to the [0]-th time layer, and {diff (u[t](x2), t), t = 0} the value of the time derivative 
of the solution at the initial moment. 
 
The solution to the differential equation can be represented as a convolution of the Green's function 
of the differential operator and the right-hand side of the equation (which plays the role of a constant 
expression, since the spatial coordinates x [i-1] and x [i] are located on the previous time layers[7],[8]:  
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As can be seen from the presented graphs, the boundary 
conditions in the coordinate are satisfied for both time layers.
The expression for the derivative given at the initial moment 
of time can be found using the standard finite-difference 
approximation of the function:

        (5)

where 
u[1](x1) is the solution vector corresponding to the [1]-th time 

layer, 
u[0](x0) is the solution vector corresponding to the [0]-th time 

layer, and 
{diff (u[t](x2), t), t = 0} the value of the time derivative of the 

solution at the initial moment.

The solution to the differential equation can be represented 
as a convolution of the Green‘s function of the differential ope-
rator and the right-hand side of the equation (which plays the 
role of a constant expression, since the spatial coordinates x 
[i-1] and x [i] are located on the previous time layers[7],[8]:

               (6)

where 
u[i + 1](x2) is the solution vector corresponding to the [i + 1] 

time layer, 
u[i](x1)      is the solution vector corresponding to the [i] -th 

time layer, and 
u[i-1](x0)    solution vector corresponding to [i-1] time layer, 
Int (G (x2, y), y = 0,1)  integral of Green‘s function on the inter-

val from 0 to 1.

4. THE RESULTS OBTAINED FOR SOLVING A 
ONE-DIMENSIONAL WAVE PROBLEM BY A 
HYBRID NUMERICAL-ANALYTICAL METHOD

The graphs of the obtained solutions at different points in time 
are presented in the following Fig.5-8:

Fig. 5: Solution plots for t =0.25, t =0.375,t = 0.5 sec.

Fig. 6: Solution plots for t =0.625, t =0.75,t = 0.875 sec.

This expression is obtained using the Maxima system of 
symbolic-analytical calculations, taking into account a given 
differential operator and given boundary conditions, which, 
according to the conditions of the problem under considerati-
on, do not depend on time. The appearance of a three-dimen-
sional graph of the Green‘s function is shown in Fig.2:

Fig. 2: 3D plot of Green‘s function on [i + 1] time layer 

For a more detailed display of the topology of the Green‘s 
function, an isofield can be constructed, on which the trace of 
the Dirac delta function is clearly visible in the form of a white 
colorless stripe passing along the diagonal (Fig. 3)

Fig. 3: Green‘s function isofield at [i + 1] time level 

In the article, functions on two initial time layers are taken 
as the initial conditions. For the initial time period, the de-
pendence 4 (0.25- (x-0.5) 2) is accepted, and for the time 
sampling step ht = 0.125 sec. moment, the dependence  
4.4 (0.25- (x-0.5) 2) is adopted. The graphs of the initial conditi-
ons are shown in Fig. 4:

Fig. 4: Graphs of initial conditions on [i-1] and [i] time layer
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Without a clue, the proposed procedure can be extended to 
the solution of problems of higher dimension, but in this case 
the method will inevitably face the problem of accumulating 
errors, since the newly calculated solutions depend on the 
previously calculated solutions at the previous time steps. The-
refore, in the multidimensional case, in the presence of regions 
of complex shape, it will be necessary to calculate the desired 
function in a sufficiently large number of interior points of the 
region so that the found values can be used as initial values for 
the next time step.

5. CONCLUSION

An algorithm for the numerical-analytical solution of the wave 
problem for a one-dimensional wave differential equation is 
implemented. The application of the step-by-step iterative Eu-
ler method for approximating the problem in time is conside-
red. At each belt step, the problem is solved by applying the 
Green‘s function. The obtained solutions illustrate the possibi-
lity of applying hybrid numerical-analytical procedures, which 
make it possible to separate the solution of spatio-temporal 
problems separately into solutions in spatial and temporal co-
ordinates. The implementation of numerical-analytical algori-
thms was carried out using the programming language and 
the system of symbolic computations Maxima, graphs of the 
propagation of the wave process for the considered space-ti-
me domain were obtained.

Fig. 7: Solution plots for t =1.0, t =1.125,t = 1.25 sec.

Fig. 8: Solution plots for t =1.375, t =1.5,t = 1.625 sec.

The presented solution graphs illustrate the possibility of 
obtaining a solution to the problem using the proposed nu-
merical-analytical hybrid approach. Of course, it is possible 
to complicate the method by passing to an implicit scheme, 
or using the „predictor-corrector“ method, but it is precisely 
the use of a simple iterative scheme of the Euler method that 
allows us to most clearly illustrate the technology of transition 
from a space-time problem to the sequential application of 
analytical solutions of spatial problems.

The graph and isofield of the solution to the problem in 
the space-time domain are presented in the following figure  
(Fig. 9):

Fig. 9: Three-dimensional graph and isofield of the obtained solu-
tion in the space-time domain
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