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Abstract

The problem of diffraction of a spherical 
sound wave by a thin hard half-plane is con-
sidered. The expression of the total field at any 
position in the space around the half-plane is 
composed of two geometrical components 
and a third one which originating from the 
edge of the half-plane. This paper takes the 
expression of the edge-diffracted field due to 
a sound doublet, as formulated in the Biot-Tol-
stoy theory of diffraction, BTD, but rearranged 
for the Dirac-like pulse by Medwin. The pres-
ent paper presents a development in the fre-
quency domain of the Fourier transform of the 
exact expression of the edge-diffracted field 
as given in the time domain. This solution is 
composed of a serial development, expressed 
in simple trigonometric integral functions, 
and which away from the geometrical optics 
boundaries shows a quite rapid convergence 
to the numerical Fourier transform of the ex-
act time-domain expression. The presented 
solution may be used as a good approximation 
in simulations and in real case predictions of 
sound scattering by thin straight-edged noise 
barriers.

Introduction

The problem of sound diffraction by straight 
edges finds several applications in acous-
tics, such as in room acoustical studies and 
simulations (Lau and Tang, 2009; Torres et 
al, 2001; Vorländer, 2013) or in the develop-
ment of mathematical models for predict-
ing the sound attenuation in the shadow of 
noise barriers (Isei et al, 1980; Jonasson, 1972; 
L’Espérance, 1989; Muradali and Fyfe, 1998; 
Nicolas et al, 1983; Thomasson, 1978).  The 
scalar acoustical solutions have also been 

implemented in electromagnetism for the 
treatment of problems of diffraction of elec-
tromagnetic waves by metallic antennas and 
scatterers. A recent paper by Menounou and 
Nikolau (2017) reviews some of the theories 
and models developed through the years for 
the treatment of diffraction of sound waves 
by obstacles delimited by sharp straight edg-
es. The problem of diffraction of a spherical 
wave by a half-plane has been the subject of 
interest of scientists for an extended period 
of time. The earliest approach on record was 
due to Kirchhoff for solving the problem of 
propagation of a wave through an aperture 
in a screen with making some reasonable 
assumptions regarding the value of the field 
on various regions of the screen (see for in-
stance Bouwkamp, 1954). Sommerfeld’s lat-
er contribution to the case of scattering by a 
hard half-plane presented an exact solution 
for plane wave incidence for either case of 
perfectly hard or perfectly soft screen (Som-
merfeld, 1896). This solution remained under 
a long time as a reference for comparison 
with new proposed solutions to similar prob-
lems. The concept of multi-valued functions 
for approaching the solution to the half-plane, 
and which is elaborated in the frequency do-
main, inspired several other physical theore-
ticians to formulating not only more tractable 
solutions (MacDonald, 1915) but also for treat-
ing the case of cylindrical wave incidence 
(Clemmow, 1950) and even for the more gen-
eral case of spherical wave incidence (Cars-
law, 1899). Several solutions have also been 
formulated for the more general case of the 
hard wedge (Carslaw, 1920; MacDonald, 1915), 
which case is amenable to that of the half-
plane. McIver and Rawlins used the method of 
matched asymptotic expansions for calculat-
ing the field in the shadow of a semi-infinite 
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barrier with a finite thickness and having any 
end impedance on its width (McIver and Raw-
lins, 1995), or more recently another contribu-
tion handling the problem by the method of 
variables’ separation used for solving two-di-
mensional diffraction problems with bodies 
having piece-wise linear ideal boundaries 
(Shanin, 2003).

Another way of approach for handling the 
problem of sound diffraction by straight edg-
es is through considering the problem in the 
time domain instead of the frequency domain. 
An analysis of the problem in the frequen-
cy domain would simply be attained through 
application of the Fourier transform to the ex-
pression of the edge-diffracted field as given 
in the time domain. Hence the solution could 
be interpreted as the transfer function of the 
system composed of the pulse source (for 
generating the sound wave) and the sensing 
receiver via the space containing the diffract-
ing object. Biot and Tolstoy (1957) proposed in 
this regard an attractive solution to the case 
of a perfectly hard wedge problem using the 
concept of normal coordinates, and which 
has been revisited during the past four dec-
ades. Important applications include the pre-
diction of the sound insulation performance 
of a hard noise barrier which is simple in 
shape but can be finite in size (Medwin, 1981), 
whereas in room acoustics the determination 
of the impulse response of a closed space in 
view of hearing simulations, i.e. auralization, 
may be made more accurate through the in-
clusion of edge diffraction effects caused by 
the distribution protuberances on walls or 
isolated objects within the space under study 
(Svensson et al., 1999). The classical assump-
tion of the edge-diffracted field as composed 
of the field generated from the contribution of 
discrete fictive wave sources located on the 
edge of the diffracting object becomes there-
fore more rational. This permits consequent-
ly to elaborate powerful and efficient algo-
rithms for simulating the sound field around 
thick or many-sided screens (Chu et al, 2007). 
The diverse analytical approaches used for 
the prediction of the sound field distribution 
around a noise barrier are usually based on 
geometrical optics assumptions where the 
noise barrier is taken as infinite in size. Under 
reasonable hypotheses on sizes and distanc-
es in comparison to the wavelength this per-
mits to consider the expression of the total 
field at the receiver hidden behind the barrier 

as composed of the field diffracted at the top 
edge of the noise barrier. In this respect the 
noise barrier is mounted on the ground, inter-
cepting the sound path from the noise source 
to the receiver, and the total field at the ob-
server is considered as made up of four com-
ponents. The noise source in this context can 
represent road traffic, and the noise source 
is in any noise problem in general considered 
as one of three parts, the two others being 
the transmission path and the receiver. For 
a ready-made noise source, tackling a noise 
problem reduces then to taking measures at 
the level of the transmission path. In the case 
of a noise barrier the transmission path is the 
combination of all lines, single or combined, 
made by the sound waves in their propagation 
from the sound source up to the receiver po-
sition. For the case of a receiver in the shadow 
zone behind the barrier, the number of these 
paths is, to the first order of diffraction, four, 
and all reach the receiver via the upper edge 
of the barrier. This is illustrated in Figure 1.

Fig. 1 A noise barrier erected between a sound 
source and a receiver: The various paths the wave 
diffracted at the edge of the barrier contributes to 
the total field at the receiver.

The propagation paths are: S-E-R, S-A-E-R 
where a reflection of the sound wave on the 
source side occurs at A, S-E-G-R with a single 
reflection on the receiver’s side at G, and S-A-
E-G-R with one reflection on each side of the 
barrier. All these components of the diffract-
ed field at the top of the barrier are have dif-
ferent amplitudes and phases resulting from 
different distances to or from the edge of the 
barrier and different angles of incidence. To 
that is further included the attenuation and 
phase shift caused by the sound reflection 
on the various parts of the ground  on either 
side of the barrier. For applications regarding 
predictions of road traffic noise attenuation 
by thin barriers, the problem is amenable to 
a two-dimensional one with relatively accept-
able estimations of the sound field when as-
suming the traffic line as an extended linear 
source parallel to the edge of the barrier. 

’R • 
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The edge-diffracted field

Considering a point-like sound source emit-
ting a Dirac pulse of strength S, according 
to the Biot-Tolstoy-Medwin, BTM, theory, the 
pressure in free space at a distance d from 
the sound source is given by (Biot and Tolstoy, 
1957; Medwin, 1981): 

(1)

Here ρ is the density of air, c the speed of 
sound propagation, and δ the Dirac delta 
function. In presence of a hard half-plane, 
the edge-diffracted field appears at a time   
after the source has emitted its pulse, r0 and 
r being the normal distances of respectively 

the source and the receiver 
to the edge of the half-plane, and z the lateral 
distance, i.e. the distance along the edge be-
tween the projections of both source and re-
ceiver positions on the edge of the half plane. 
The value of is simply the travel time tak-
en by the pulse to reach the receiver via the 
edge of the half-plane, or the travel time for 
the shortest possible two-segment distance 
from sound source to receiver. In the particu-
lar case of z = 0, the study of diffraction by the 
half-plane is more simplified as it is amenable 
to the two-dimensional geometry of Figure 2.

Fig. 2 Two-dimensional geometry of the problem 
of diffraction of a spherical wave by a half-plane.

When the source and receiver are placed on 
the same plane normally to the edge of the r 

half-plane, z = 0, and the edge-diffracted field 
takes the expression (Ouis, 2002; and consid-
ered again in Appendix A):

(2)

For the sake of avoiding unnecessary over-
load, a full account of the steps that led to 
this final form is given in detail in Appendix A 
(see also Ouis, 2002). For writing convenience, 
here the curly bracket {}+ represents the sum 
of two terms within the bracket and which cor-
respond to the different sign combinations in 
the argument of the cosine function, i.e. cos± 
= cos[(θ± θ0)/2)]. Furthermore, t±=(r± r0)/c.

The expression of the diffracted field in the 
frequency domain may be obtained through 
operating a Fourier transform on the time-do-
main expression in (2), i.e. (Appendix B).

(3)

As the diffracted field appears only after trav-
eling the distance from the sound source to 
receiver via the edge of the half-plane, i.e. it 
is zero for t < t+, the integration is then to be 
performed from  t+ to ¥, with the obvious sin-
gularity at t+. An exact analytical expression 
of the Fourier transform is not available in 
known tables, and therefore approximations 
become necessary. Several various forms of 
such approximations, based mainly on poly-
nomial developments, have been presented in 
an early paper (Ouis, 2002) and where most of 
them were based on expressions of the edge 
diffracted field at times close to t+ and where 
most of the sound energy is concentrated. A 
more recent study has been presented by the 
author where the expression of the diffracted 
field has been made through a Fourier analy-
sis of the temporal form of the diffracted field 
using some special mathematical functions 
in combination with various polynomial devel-
opments (Ouis, 2019). It could be worth men-
tioning that In this work a new approximation 
is presented with the expression of the dif-
fracted field being given in terms of a series 
expansion taking into consideration the ex-
pression of the diffracted field at all times 
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following the time of its arrival at the receiver 
position. It is noted that the denominator of 
the expression between the brackets in for-
mula (3) can be expressed as t2- α± with α± = 
t+

2 - 4rr0 cos±
2 /c2 = t-

2 + 4rr0 sin±
2 /c2 ≥ 0. In this 

last form the equality α± = t+ is fulfilled only for 
one of the two components in the expression 
of the total field and in case the receiver posi-
tion is at either the geometrical incidence, or 
reflection boundaries, that is when θ = π + θ0 
or θ = π ̶ θ0 respectively.

In the present work, the integration in (3) is 
processed through expressing the integrand 
into an appropriate series expansion. The Fou-
rier transform is then applied to each term of 
the series expansion resulting in terms con-
taining relatively simply to handle functions 
involving trigonometric integrals. Hence, and 
with reference to Eqs. (2-3) the Fourier inte-
gration is composed of the sum of 2 terms 
corresponding to the values of α± according 
to the signs + and -, as given in Eq. (3) and 
again reformulated in some more details in 
(A.5). As the same procedure is taken for both 
the terms with α+ and α‒ we consider in what 
fol lows the dummy expression α for meaning 
either of these two parameters. Hence

(4)

or   with:

(5)

The integral converges since:

(6)

Moreover: 

(7)

Since the value of the integrand is bounded at 
the limits of the integration sign with an inte-
grable singularity at t+:

(8)

and the decay of the integrand is fast enough 
to be integrable for large values of the varia-
ble, i.e.:

(9)

or some positive k0 and k1.

We have for t > α (Spanier and Oldham, 1987, f. 
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with:

(14)

we get then:

(15)

Here the interchange of order between the 
signs of discrete summation and integration 
is possible because of the convergence of 
the integrand, and which is composed of an 
infinite series of non-negative terms (a con-
sequence of application of the Fubini-Tonelli’s 
theorem, see for instance (Folland, 1999)).

(16)

Hence with the change of variable s=t/t+. It re-
mains to calculate:

(17)

for n > 2. Here 

An integration by parts gives:

(18)

Hence:

(19)

By induction, it can be shown that we get for 
n ≥ 2 and for:

(20)

with:

(21)

in which ε is the sign of     and si and Ci are 
the sine and cosine integrals respectively 
(Spanier and Oldham, 1987, f. 38:1:1, p. 361 and 
f. 38:3:5, p. 365):

(22)

Summing up:

(23)

with
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the half-plane and covering the whole space 
surrounding it.

Fig. 3: Relative variation of the amplitude of the 
edge-diffracted field in dB with frequency in the 
range [20 Hz - 20.0 kHz]. r0 = 4.0 m; r = 5.0 m; 
θ0 = 30.0o; θ = 240.0o, see Fig. 2 for details. Con-
tinuous line: exact numerical Fourier transform; 
dashed line: approximate, as given in expression 
(23).

Fig. 4: Variation of the relative amplitude of the 
edge-diffracted field in dB as function of the re-
ceiver angle θ around the half-plane in the range 
[0.0o - 360.0o]; r0 = 4.0 m; r = 6.0 m; θ0 = 30.0o; see 
Fig. 2 for details. f = 150.0 Hz. Continuous line: 
exact numerical Fourier transform; dashed line: 
approximate, as given in expression (23).

Fig. 5: Relative variation of the amplitude of the 
edge-diffracted field in dB as function of the re-
ceiver angle θ in the range [0.0o - 360.0o]; r0 = 4.0 
m; r = 6.0 m; θ0 = 30.0o; see Fig. 2 for details. f = 
500.0 Hz. Continuous line: exact numerical Fou-
rier transform; dashed line: approximate, as gi-
ven in expression (23).

Fig. 6: Relative variation of the amplitude of 
the edge-diffracted field in dB as function of the 
number of terms taken in the approximation of 
expression (23). Details as given in Fig. 4 with ex-
pansion of the angle range around the geometri-
cal optics’ reflection boundary.

The zones of disagreement between the ex-
act numerical Fourier integration and the 
approximation shrink considerably when in-
cluding more and more elements in the se-
ries expansions (last term in final form (23)). 
It would be more objective to analyze the 
rate of convergence of the series in formula 
(23), and if defined as                where L is the  

exact value of the expression and xk the term 
of order k in the series. However, the difficul-
ty in making a reasonable meaning to such 
an analysis resides mainly in the considera-
tion of two main facts. First, at the approach 
to the geometrical reflection and incidence 
zones, the approximation demarks gradual-
ly from the exact value of the diffracted field 
and the divergence widens considerably the 

lim
!→#

𝑥𝑥!$% − 𝐿𝐿
𝑥𝑥! − 𝐿𝐿
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nearer to these zones. The second reason is 
that the rate of convergence will also depend 
on the frequency considered in the FT, and 
the higher the frequency (i.e. the shorter the 
wavelength as compared to typical distances 
in the problem) the faster the convergence of 
the approximation to the exact expression, 
but then here again the proximity to the ge-
ometrical zones plays also an important role.

Regarding the frequency variation of the am-
plitude of the edge-diffracted field, a relative 
discrepancy of less than approximately 5% 
(corresponding to about 0.45 dB) is observed 
between the exact integration and the pro-
posed approximation for frequencies above a 
value for which the condition kR = 5 is fulfilled, 
k being the wavenumber and R the longer dis-
tance from the edge of the half-plane to ei-
ther the sound source or the receiver. It may 
be worthwhile noting the symmetry of the be-
havior of the amplitude of the edge-diffracted 
field around the half-plane, and which may be 
shown as due to exchanging θ by (2π- θ) in Ex-
pression (2), and which leads only to a change 
of sign of the expression following the change 
of  to                              .

Conclusions

In this note the diffraction of a spherical wave 
by the edge of a hard half–plane was consid-
ered.  The expression of the edge-diffracted 
wave in the time domain is exact but does not 
allow itself for a direct Fourier transform in or-
der to obtain the expression of the edge-dif-
fracted field in closed form in the frequency 
domain. Hence the time domain expression 
was reformulated as a combination of terms 
leading partly to exact integrations and a se-
rial development in view of performing ade-
quate Fourier transforms to the terms in the 
series expansion. The new approximate ex-
pression of the edge diffracted field shows 
good agreement with that of the numerical 
integration of the exact time-domain expres-
sion in the entire space surrounding the half-
plane with an exception at approaching the 
geometrical reflection and incidence zones. 
In these zones the field exhibits a singular 
behavior in an angular region which becomes 
narrower the higher the frequency. According 
to the graph of Figure 6 the inclusion of more 
terms in the approximate series expansion 
shrinks to some extent the zone of disagree-
ment with the exact numerical integration, 

but this sets an exponentially increasing load 
on computation resources. A possible meas-
ure to this deficiency in the approximation 
may be to consider more terms in the series 
expansion of (B.20) and to consider extrapo-
lating the field between two points on either 
side of the boundary zones around singular-
ities. This remedy however will depend not 
only on the frequency considered but also on 
the geometrical configuration of the problem 
for the reason that some combination of the 
source and the receiver positions can lead to 
violent and erratic variations of the edge dif-
fracted field. An alternative way of treating 
the problem of diffraction specifically at the 
reflection and shadow zone boundaries could 
be through adopting a completely different 
approach based on considerations of the 
acoustic energy transported by the edge dif-
fracted pulse. In fact, it can be seen from the 
time expression of the pressure that this en-
ergy is concentrated right after the time of ar-
rival of the diffracted signal. This energy may 
be considered as the contribution from fictive 
secondary sources positioned on either side 
of the point on the edge making shortest the 
distance from source to receiver via the edge 
of the half-plane (this point is the apex of 
the “cone of diffraction” as defined by Keller 
(1962); the half-plane is a special case of the 
more general case of the wedge, and where 
the opening angle extends to 2π). Hence a 
spatial integration of the expression of the 
edge-diffracted field centered at this point, 
and along a definite length on the diffract-
ing edge, gives an accurate value to the early 
part of the edge impulse response (Svensson 
and Calamia, 2006). Here the amplitude of 
the edge diffracted field approaches in mag-
nitude that of the incident field or that of the 
field at specular reflection at respectively the 
shadow boundary or the reflection boundary. 
This is so to ensure a smooth continuity of the 
total field at transiting through those bounda-
ries, and again the considered frequency will 
be decisive for the length of the integration 
path on the edge of the half-plane. For practi-
cal applications of usual occurrence, such as 
calculating the field diffracted around a thin 
noise barrier, the presented solution gives ac-
curate enough predictions for a barrier with 
height comparable to or larger than a wave-
length.

𝑐𝑐𝑐𝑐𝑐𝑐± to −𝑐𝑐𝑐𝑐𝑐𝑐∓  
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Appendix A: Development for Equation (2)

For a sound source with strength S in a fluid 
with density ρ, the incident field u at a receiv-
er point at some distance d from the sound 
source is:

(A.1)

For a lateral distance z = 0 between the sound 
source and the receiver, the time of arrival of 
the edge diffracted wave after the source has 
emitted its pulse is:

(A.2)

c being the speed of wave propagation. With 
reference to Figure 2, and for the general case 
of a wedge with exterior angle θW, the expres-
sion for the edge-diffracted field is:

(A.3)

ν = π/θW being the wedge index, and which 
takes the value ½ for the half plane.

In (A.3)

(A.4)

and {β} is in a compact form the sum of 4 
fractions resulting from taking the possible 
combinations of signs in the arguments of the 
trigonometric functions in:

(A.5)

For the half plane, the expression for the 
edge-diffracted field becomes:

(A.6)

𝑢𝑢 =
𝜌𝜌𝜌𝜌𝜌𝜌
4𝜋𝜋𝜋𝜋 )𝑡𝑡 −

𝜋𝜋
𝑐𝑐- 

 

𝜏𝜏! = (𝑟𝑟 + 𝑟𝑟!)/𝑐𝑐 

𝑢𝑢!(𝑡𝑡) =
−𝑆𝑆𝑆𝑆𝑆𝑆
4𝜋𝜋𝜃𝜃"

{𝛽𝛽}
exp	(−𝜈𝜈𝜈𝜈)
𝑟𝑟𝑟𝑟#sinh(𝜈𝜈)

 

𝑦𝑦 = arccosh
𝑐𝑐!𝑡𝑡! − (𝑟𝑟! + 𝑟𝑟"!)

2𝑟𝑟𝑟𝑟"
 

{𝛽𝛽} =
sin[𝜈𝜈(𝜋𝜋 ± 𝜃𝜃 ± 𝜃𝜃!)]

1 − 2exp(−𝜈𝜈𝜈𝜈)cos[𝜈𝜈(𝜋𝜋 ± 𝜃𝜃 ± 𝜃𝜃!)] + exp(−2𝜈𝜈𝜈𝜈)
 

𝑢𝑢!(𝑡𝑡) =
−𝑆𝑆𝑆𝑆𝑆𝑆
8𝜋𝜋"

{𝛽𝛽}
1

𝑟𝑟𝑟𝑟#sinh(𝑦𝑦)
𝑒𝑒$%/" 

in which:

(A.7)

Rewriting (A.5) for the half-plane gives:

Next, use is made of the property:

(A.9)

and of:

(A.10)

The trigonometric expressions in {β}can fur-
ther be simplified according to the expres-
sions in the table:

(A.11)

with:

(A.12)

Hence:

(A.13)

where x stands for            

{β} then becomes:

𝑦𝑦 = arccosh(𝑎𝑎) = log .𝑎𝑎 + 0𝑎𝑎! − 13 		with				𝑎𝑎 =
𝑐𝑐!𝑡𝑡! − (𝑟𝑟! + 𝑟𝑟"!)

2𝑟𝑟𝑟𝑟"
 

{𝛽𝛽} =
sin ((𝜋𝜋 ± 𝜃𝜃 ± 𝜃𝜃!)2 /

1 − 2𝑒𝑒"
#
$cos ((𝜋𝜋 ± 𝜃𝜃 ± 𝜃𝜃!)2 / + 𝑒𝑒"#

 

																																																										=
sin[(𝜋𝜋 ± 𝜃𝜃 ± 𝜃𝜃!)/2]

2𝑒𝑒"#/${cosh(𝑦𝑦/2) − cos[(𝜋𝜋 ± 𝜃𝜃 ± 𝜃𝜃!)/2]}
 

cosh	(𝑦𝑦/2) = ,(cosh(𝑦𝑦) + 1)/2 

sinh 𝑦𝑦 =
𝑒𝑒! − 𝑒𝑒"!

2 = *cosh# 𝑦𝑦 − 1 = *a# − 1 

++ +- -+ --

sin[(π±θ±θ0)/2] cos + cos- cos- cos+

cos[(π±θ±θ0)/2] -sin+ -sin- sin- sin+

cos, sin±= cos, sin )
𝜃𝜃
2 ±

𝜃𝜃!
2 , 

{𝛽𝛽}~
1
2 '

cos +
𝑥𝑥 + sin + +

cos −
𝑥𝑥 + sin − +

cos −
𝑥𝑥 − sin − +

cos +
𝑥𝑥 − sin +0 

𝑥𝑥 = cosh	(𝑦𝑦/2) = -(a + 1)/2 . {β} 

{𝛽𝛽}~𝑥𝑥 &
cos +

𝑥𝑥! − sin +! +
cos −

𝑥𝑥! − sin −!. 

(A.8)
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in which:

(A.7)

Rewriting (A.5) for the half-plane gives:

Next, use is made of the property:

(A.9)

and of:

(A.10)

The trigonometric expressions in {β}can fur-
ther be simplified according to the expres-
sions in the table:

(A.11)

with:

(A.12)

Hence:

(A.13)

where x stands for            

{β} then becomes:

𝑦𝑦 = arccosh(𝑎𝑎) = log .𝑎𝑎 + 0𝑎𝑎! − 13 		with				𝑎𝑎 =
𝑐𝑐!𝑡𝑡! − (𝑟𝑟! + 𝑟𝑟"!)

2𝑟𝑟𝑟𝑟"
 

{𝛽𝛽} =
sin ((𝜋𝜋 ± 𝜃𝜃 ± 𝜃𝜃!)2 /

1 − 2𝑒𝑒"
#
$cos ((𝜋𝜋 ± 𝜃𝜃 ± 𝜃𝜃!)2 / + 𝑒𝑒"#

 

																																																										=
sin[(𝜋𝜋 ± 𝜃𝜃 ± 𝜃𝜃!)/2]

2𝑒𝑒"#/${cosh(𝑦𝑦/2) − cos[(𝜋𝜋 ± 𝜃𝜃 ± 𝜃𝜃!)/2]}
 

cosh	(𝑦𝑦/2) = ,(cosh(𝑦𝑦) + 1)/2 

sinh 𝑦𝑦 =
𝑒𝑒! − 𝑒𝑒"!

2 = *cosh# 𝑦𝑦 − 1 = *a# − 1 

++ +- -+ --

sin[(π±θ±θ0)/2] cos + cos- cos- cos+

cos[(π±θ±θ0)/2] -sin+ -sin- sin- sin+

cos, sin±= cos, sin )
𝜃𝜃
2 ±

𝜃𝜃!
2 , 

{𝛽𝛽}~
1
2 '

cos +
𝑥𝑥 + sin + +

cos −
𝑥𝑥 + sin − +

cos −
𝑥𝑥 − sin − +

cos +
𝑥𝑥 − sin +0 

𝑥𝑥 = cosh	(𝑦𝑦/2) = -(a + 1)/2 . {β} 

{𝛽𝛽}~𝑥𝑥 &
cos +

𝑥𝑥! − sin +! +
cos −

𝑥𝑥! − sin −!. 

(A.14)

And ud takes the form:

(A.15)
Next:

(A.16)

with:

(A.17)

Furthermore:

(A.18)

x in (A.13) may also be expressed as:

(A-19)

Then inserting (A.16) and (A.18) into (A.15) 
gives:

(A.20)

And which gives the expression in Equation 
(2) after using                              .

Appendix B: Details for Equation (3)

(B.1)
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with:

(B.2)

and ud = 0 for t < t+. Hence:

(B.3)

with the denominator of the fraction within 
the bracket in the integrand being expressed 
as:

(B.4)

with:

(B.5)
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