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In [19], the flow around a six-bladed propeller is modeled 
using TVD schemes on a tetrahedral mesh, and the acoustic 
noise in the far field is calculated using the Fox Williams – Ha-
wkings (FW-H) method. Modeling flow of the rotor in the ge-
neral case of motion, as well as determination of its aerody-
namic and acoustic characteristics are carried out in studies 
[20, 21]. The developed software makes it possible to simulate 
the features of the flow around both an isolated main rotor 
with elastic blades making a swing motion, and together with 
the fuselage and the tail rotor [22–25]. In particular, Detached 
Eddy Simulation (DES) is used in [25] to solve the conjugate 
problem of calculating the aeroelastic deformation of pro-
peller blades. The results of numerical calculations are used to 
refine the calculated vortex models and models for generating 
broadband noise.

In this paper, we simulate large eddies of a turbulent flow 
of a viscous compressible gas induced by the impellers of a 
quadcopter. Based on the calculated non-stationary pressure 
field, the sound pressure level in the far field is determined 
using the acoustic analogy method. Both the spectral analysis 
of the noise is carried out, and the integral directivity patterns 
of the acoustic radiation are constructed at different angular 
speeds of the rotor rotation. Different angular rotor speeds si-
mulate vertical take-off and landing modes.

2. NUMERICAL SIMULATION

2.1. Geometric model
Highly loaded propellers K6 are considered using an air ring, 

which is a body of revolution with an aerodynamic profile in 
cross section (Fig. 1). The ring allows you to increase the speed 
in the plane of rotation of the propeller and the mass air flow 
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1. INTRODUCTION

Quadcopter is an object with a small unobtrusive largest sca-
ttering cross section when a radar direction finding. From the 
point of view of practice, it is important to analyze the acoustic 
noise generated by the impeller and the aircraft as a whole [1]. 
Registration and processing of the acoustic signal is of interest 
for identifying an aircraft of this class and the maneuver it per-
forms, as well as for extracting information useful for monito-
ring the location and movement parameters [2, 3].

To study the patterns of motion of a quadcopter in practice, 
a mathematical model is used that describes the motion of a 
rigid body with six degrees of freedom [4, 5]. The method for 
calculating the lift of a remotely piloted aircraft experiencing 
the influence of the ground effect is given in [6]. The aerody-
namic characteristics of the impeller in the axial flow mode 
are determined in the work [7] based on the data of numerical 
simulation. In [8], at the preliminary stage of modeling, the ro-
tor is represented in the form of an infinitely thin flat disk that 
maintains a pressure drop, simulating the creation of a lifting 
force by the rotor. Calculations are made based on Reynolds 
averaged Navier-Stokes equations.

Aeroacoustic rotor characteristics of the ring are in [9-18] 
using both experimental methods and simplified computati-
onal approaches and using modern numerical methods. The 
end parts of the propeller blade operate in the region of high 
Mach numbers, and a change in the geometry of this part of 
the blade leads to significant changes in the vortex structure 
of the forming flow and pressure field. In this case, the maxi-
mum of the broadband sound radiation near the rotor corre-
sponds to the region of interaction of the blade with the tip 
vortex.
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The angle of the blades, determined by the angle of rotation 
of the blade profile, which is at a relative radius of 0.75, was 
set at 28°. Such an angle was chosen in accordance with the 
effective operating mode of the propeller, which provides ma-
ximum thrust at a low incoming flow, that is, in conditions of 
vertical takeoff and landing.

2.2. Mathematical Model and Boundary Conditions
To simulate the flow induced by the rotation of the impeller 

blades of a quadcopter, the full Navier – Stokes equations are 
used, which describe the flow of a viscous compressible gas 
and are closed using the WALE subgrid viscosity model. Calcu-
lations are carried out to find non-stationary fields of physical 
variables that characterize the flow around the impeller and 
allow determining the aerodynamic loads on the rotor blades. 
The working medium is air. The air density changes according 
to the ideal gas model. Air viscosity is considered constant.

The calculation of the acoustic characteristics of the im-
peller is based on the method of acoustic analogy and 
the integral method of Fox Williams – Hawkings (Ffowcs  
Williams – Hawkings, FW – H).

The computational domain consists of rotating (rotor) and 
stationary (stator) subareas. To take into account the interac-
tion between the regions and stitch the calculation results 
in each of the subdomains, the technology of sliding grids is 
used.

At the entrance to the computational domain, the speed 
and total temperature are set, at the other boundaries, the sta-
tic pressure is indicated. The turbulence intensity at the inlet 
boundary is 5%, and the ratio of the turbulent viscosity to the 
dynamic viscosity of the air is 10. On the walls, the adhesion 
and no-flow conditions are applied. For temperature, the con-
dition of zero heat flux is applied.

The calculations were performed on unstructured grid, con-
sisting of polyhedral cells. The total number of cells is 3 million. 
The maximum characteristic cell size in the main part of the 
region is 0.1 m. Part of the grid with prismatic cells adjoins the 
solid walls. The thickness of the prismatic layer is assumed to 
be 1 mm, the number of layers is 5, and the cell growth factor 
is 1.2. 

2.3. Numerical method
Time integration is carried out by the Runge – Kutta method 

of the third order of accuracy. Discretization of inviscid flows 
is carried out using the MUSCL scheme (Monotonic Upstre-
am Schemes for Conservation Laws), discretization of viscous 
flows is carried out by the method of a centered scheme of 
the second order of accuracy. The MUSCL scheme allows one 
to increase the order of approximation in spatial variables wit-
hout losing the monotonicity of the solution, satisfies the TVD 
(Total Variation Diminishing) condition, and is a combination 
of second-order accurate centered finite differences and a 
dissipative term. Finding the gradient and pseudo-Laplacian 
at the midpoint of the control volume face is based on ratios 
adapted for calculations on highly stretched meshes used in 
the boundary layer. The geometric multigrid method is used 
to solve the system of difference equations [26-27]. A sys-
tem of grids of various resolutions is constructed using the  
Edge-Collapsing Method.

rate, as well as create a circulation of speed around the profile 
of the ring, which leads to an increase in thrust, a decrease in 
power on the rotor blades and an increase in the profile effi-
ciency of the blades. The combination of a screw and a ring 
forms a single impeller design. To design the propeller bla-
des, a graph from [1] is used for the distribution of the relative 
thickness c, curvature f, rotation angle φ and the length of the 
chord of the blade profile in plan b along the relative radius 
of the propeller (the radius of the section plane relative to the 
radius of the entire propeller). The impeller geometry is shown 
in Fig. 2.

Fig. 1: Impeller design sketch

The choice of the K6 propeller is also due to the presence 
in the public domain of extensive studies of TsAGI, including 
the determination of the aerodynamic characteristics of the 
impeller and the effect on them of various design changes. 
The calculation parameter is the angular speed of the rotor 
rotation. The propeller geometrical parameters are calculated 
based on the geometry of the K6-VK1 impeller with a four-bla-
de propeller, 25% shortened by the length of the air ring and 
a hub fairing. The propeller diameter is 760 mm, and the ring 
outlet diameter is 780 mm.

Fig. 2: Impeller geometry
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Fig. 3: Impeller flow velocity field

The time fluctuations of pressure obtained in the process of 
unsteady gas-dynamic calculation make it possible to deter-
mine the acoustic characteristics of the impeller both in the 
near and far fields. The most important characteristics are the 
dependence of the overall sound pressure level (OASPL) on 
the direction to the observation point, and the spectral com-
position of the acoustic signal at the observation points. The 
acoustic signal at the observation points is obtained as a result 
of data processing on the control surfaces after the calculati-
on. The spectral characteristics of signals are found using me-
thods based on the discrete Fourier transform.

At the stage of constructing the geometry of the computati-
onal domain, an array of points is selected at which the acous-
tic characteristics will be measured. The points are located in 
the axial direction with a step of 3.38 m and in the direction 
of removal from the axis of rotation with a step of 2 m. The 
geometry of the computational domain with the considered 
points of space is shown in Fig. 4.

Fig. 4: Geometry of the computational domain with indication of 
the considered points in space

Acoustic problem solution is found as the sum of the sur-
face integral of a function of pressure and pulsation rate and 
spatial integral of the distribution function of the quadrupole 
sources. At low Mach numbers, quadrupole sources of sound 
are neglected, and the control surface of integration is identi-
fied with the surface of the streamlined body [25]. In this case, 
the acoustic field of the streamlined body is determined by 
the value of non-stationary dynamic loads acting on it from 
the flow side. Accounting surface integrals method substan-
tially complicates the investigation of noise emission bodies of 
complex spatial configuration and reduces the performance 
of calculations.

The calculations are carried out with a time step of 5·10–6, 
which corresponds to the resolution of waves with a frequen-
cy of up to 50 kHz. The numerical calculation was carried out 
using the ANSYS Fluent software for numerical simulation of 
gas dynamics.

2.4. Calculation results
The results of aerodynamic calculations are used to simula-

te the propagation of acoustic disturbances in the near and 
far fields and to find the aeroacoustic characteristics of the 
impeller. It is assumed that the quadcopter is at a height of 
15.3 m above a solid surface with the impeller orientation 
corresponding to vertical take-off and landing (the plane of 
rotation of the propeller is parallel to the solid surface). The 
side of the computational domain boundaries are located at 
a distance of 5 DВ.

The mode of axial flow around the propeller is investigated, 
and numerical calculations are carried out at different angular 
speeds of rotation of the rotor (the main design version corre-
sponds to the angular speed ω = 3000 rpm). The oncoming 
flow velocity is assumed to be zero. The Reynolds number is 
calculated from the chord of the blade and its end speed, the 
Reynolds number at the end is Re=5.8·105. Due to the sym-
metry of the rotor and the axial flow regime, not the entire 
propeller is modeled, but the sector with one blade with the 
setting of periodic boundary conditions on the meridional 
planes of the sector.

The use of a vortex-resolving approach to the description 
of turbulent flow makes it possible to resolve not only the 
structure of end vortices, but also the vortex sheet that comes 
off the blades, as well as the interaction of vortex structures of 
various scales. Сlosed areas of vorticity indicates the presence 
of discrete vortex bundles, which at some distance from the 
propeller are blurred, forming a continuous area of vorticity. 
The results of gas-dynamic calculations show that near a solid 
surface the speed of the thrown air flow is about 18 m/s. The 
air flow near the impeller is shown in Fig. 3.
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According to the results of calculation of unsteady aerody-
namic OSPL level found on spherical surfaces around the im-
peller for different rotor speeds (see Fig. 7). To analyze the re-
sults, several control surfaces are selected, which are specified 
in the form of bodies of revolution with an axis coinciding with 
the axis of rotation of the propeller. The plane of the diagram, 
built in a polar coordinate system, is perpendicular to the pla-
ne of rotation of the propeller. Distance to control surfaces is 
1, 2, 5 and 10 meters. The sound pressure level is located at 
twenty points on an arc with a certain radius, after which the 
curve is constructed using spline interpolation.

Fig. 7: Directional patterns of acoustic radiation on the control 
surfaces located at a distance of 1 (line 1), 2 (line 2), 5 (line 3) and 
10 (line 4) m from the rotor rotation axis at ω = 2000 (a), 3000 (b) 
and 4500 (c) rpm

The maximum noise level generated by a rotating propeller 
is observed behind the ring in the plane of rotation of the pro-
peller and near this plane. With distance from the propeller, 
the noise level decreases. With an increase in the speed of ro-
tation of the propeller, the total power of sound radiation inc-
reases. The main sources of sound are the areas of separation 
of end vortices and the areas of their interaction with small-
-scale vortex structures.

The Proudman formula is used to estimate the power of 
broadband sound sources using time-averaged flow charac-
teristics (Fig. 8). Such a distribution is rather uniform and is 
characterized by a monotonic increase in the size of the regi-
on in which the maximum generation of broadband noise is 
observed.

Fig. 8: Power distribution of broadband sound radiation sources 
using time-averaged flow characteristics

Based on the results of the acoustic calculation, the values of 
the total noise level at the points under consideration (Fig. 5) 
and the distribution of the sound pressure level over the wave 
frequencies in each of them were obtained. Figure 6 shows 
the distributions of the sound pressure level over discrete fre-
quencies at points 2 and 16. Point 2 is located in the plane of 
rotation of the propeller, point 16 is located at a height of 1.75 
m from the flat surface on the axis of rotation of the propeller. 
At point 16 (at the level of the average height of a person), 
the overall sound pressure level is about 72 dB, which in many 
sources is classified as noise equivalent to a loud conversation.

Fig. 5: Overall sound pressure level (OSPL) values at selected po-
ints (dB)

At the points located on the axis of rotation, three harmo-
nics equidistant from each other are visible, corresponding to 
the frequencies of the discrete tone. The probable suppression 
of these harmonics by some change in the design of the pro-
pulsion unit would reduce the outgoing noise even more.

Fig. 6: Distribution of the sound pressure level at points 2 (a) and 
16 (b) over discrete frequencies (dB)
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3. CONCLUSION

Problem-oriented means of numerical simulation of the aero-
dynamic characteristics of the impeller in various operating 
modes have been created. Research and spectral analysis of 
the noise generated by the impeller at various operating mo-
des has been carried out. The distribution diagrams of the 
sound pressure level in the far field were obtained by calcula-
tion. The nature of the spectrum and the location of the ampli-
tude maxima can be useful for the identification and classifica-
tion of aircraft based on noise direction finding data.

Applicable to the object under consideration, which is a pro-
peller that creates thrust for the flight of an aircraft, the ob-
tained level of acoustic radiation seems to be acceptable. 
Often, such aircraft create acoustic noise, which significantly 
limits their use in various conditions (in particular, in an urban 
environment). A fairly low level of generated noise was achie-
ved by using highly loaded propellers, which make it possible 
to obtain a sufficiently large thrust force at a relatively low ro-
tational speed.
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